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Abstract. We deepen our study on infinitesimal lifting properties of
maps between locally noetherian formal schemes started in [AJP]. In
this paper, we focus on properties which make sense specifically in the
formal context. In this vein, we make a detailed study of the rela-
tionship between the infinitesimal lifting properties of a morphism of
formal schemes and those of the corresponding maps of usual schemes
associated to the directed systems that define the corresponding formal
schemes. Among our main results, we obtain the characterization of
completion morphisms as pseudo closed immersions that are flat. Also,
the local structure of smooth and étale morphisms between locally noe-
therian formal schemes is described: the former factors locally as a com-
pletion morphism followed by a smooth adic morphism and the latter
as a completion morphism followed by an étale adic morphism.
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Introduction

Formal schemes have always been present in the backstage of algebraic
geometry but they were rarely studied in a systematic way after the founda-
tional [EGA I, §10]. It has become more and more clear that the wide appli-
cability of formal schemes in several areas of mathematics require such study.
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Let us cite a few of this applications. The construction of De Rham cohomol-
ogy for a scheme X of zero characteristic embeddable in a smooth scheme
P , studied by Hartshorne [H] (and, independently, by Deligne), is defined
as the hypercohomology of the formal completion of the De Rham complex
of the completion of P along X. Formal schemes play a key role in p-adic
cohomologies (crystalline, rigid . . . ) and are also algebraic models of rigid
analytic spaces. This developments go back to Grothendieck with further
elaborations by Raynaud in collaboration with Bosch and Lütkebohmert
and later work by Berthelot and de Jong. In a different vein, Strickland [St]
has pointed out the importance of formal schemes in the context of (stable)
homotopy theory.

A particular assumption that it is almost always present in most earlier
works on formal schemes is that morphisms are adic, i.e. that the topology of
the sheaf of rings of the initial scheme is induced by the topology of the base
formal scheme. This hypothesis on a morphism of formal schemes guarantees
that its fibers are usual schemes, therefore an adic morphism between formal
schemes is, in the terminology of Grothendieck’s school, a relative scheme
over a base that is a formal scheme. But there are important examples of
maps of formal schemes that do not correspond to this situation. The first
example that comes into mind is the natural map Spf(A[[X]]) → Spf(A)
for an adic ring A. This morphism has a finiteness property that had not
been made explicit until [AJL1] (and independently, in [Y]). This property
is called pseudo finite type1. The fact that pseudo finite type morphisms
need not be adic allows fibers that are not usual schemes, and the structure
of these maps is, therefore, more complex than the structure of adic maps.
The study of smoothness and, more generally, infinitesimal lifting properties
in the context of noetherian formal schemes together with this hypothesis of
finiteness was embraced in general in our previous work [AJP]. We should
mention a preceeding study of smooth morphisms under the restriction that
the base is a usual scheme in [Y] and also the overlap of several results in
[AJP] and a set of results in [LNS, §2], based on Nayak’s 1998 thesis.

In [AJP] we studied the good properties of these definitions and the agree-
ment of their properties with the corresponding behavior for usual noether-
ian schemes, obtaining the corresponding statement of Zariski’s Jacobian
criterion for smoothness. Now we concentrate on studying properties which
make sense specifically in the formal context getting information about the
infinitesimal lifting properties from information present in the structure of
a formal scheme.

This paper can be structured roughly into three parts. The first, formed
by sections 1, 2 and 3 includes preliminaires, introduces the notion of quasi-
covering and the study of completion morphisms. We know of no previous
reference about these matters, so we include all the needed details. They
will be indispensable to state our results. The second part encompasses

1In [Y] the terminology formally finite type is used.
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three sections (4, 5 and 6). We show that there exists a close relationship
between the infinitesimal lifting properties of an adic morphism and the in-
finitesimal lifting properties of the underlying morphism of ordinary schemes
f0. The third part (section 7) treats the structure theorems, which are the
main results of this work. We characterize open immersions and completion
morphisms in terms of the étale property. We classify étale adic coverings
of a noetherian formal scheme. Finally, we give local structure theorems for
unramified, étale and smooth maps, that show that it is possible to factor
them locally into simpler maps.

Let us discuss in greater detail the contents of every section. Our frame-
work is the category of locally noetherian formal schemes. In this category
a morphism f : X→ Y can be expressed as a direct limit

f = lim−→
n∈N

fn

of a family of maps of ordinary schemes using appropriate Ideals of definition.
The first section sets the basic notations and recalls some definitions that
will be used throughout the paper. The second section deals with morphisms
between locally noetherian formal schemes expressed as before as a limit in
which every map fn is a closed immersion of usual schemes. It is a true
closed immersion of formal schemes when f is adic. We treat radical maps
of formal schemes and see that the main results are completely similar to
the case of usual schemes. On usual schemes, quasi-finite maps play a very
important role in the understanding of the structure of étale maps. In
the context of formal schemes there are two natural generalizations of this
notion. The simplest one is pseudo-quasifinite (Definition 2.7) — in a few
words: “of pseudo-finite type with finite fibers”. The key notion though
is that of quasi-covering (Definition 2.8). While both are equivalent in the
context of usual schemes, the latter is a basic property of unramified and,
therefore, étale maps between formal schemes (cf. Corollaries 4.7 and 6.6).
In section 3 we discuss flat morphisms in the context of locally noetherian
formal schemes. Next, we study morphisms of completion in this setting.
They form a class of flat morphisms that are closed immersions as topological
maps. These kind of maps will be essential for the results of the last section.

Expressing a morphism f : X → Y between locally noetherian formal
schemes as a limit as before, it is sensible to ask about the relation that
exists between the infinitesimal lifting properties of f and the infinitesimal
lifting properties of the underlying morphisms of usual schemes {fn}n∈N.
This is one of the main topics of the next three sections. The case of unram-
ified morphisms is simple: f is unramified if, and only if, fn are unramified
∀n ∈ N (Proposition 4.1). Another characterization is that f is unramified
if, and only if, f0 is and the fibers of f and of f0 agree (Corollary 4.10). A
consequence of this result is a useful characterization of pseudo closed im-
mersion as those unramified morphisms such that f0 is a closed immersion
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(Corollary 4.13). Smooth morphisms are somewhat more difficult to char-
acterize. An adic morphism f is smooth if, and only if, f0 is and f is flat
(Corollary 5.6). For a non adic morphism, one cannot expect that the maps
fn are going to be smooth as it is shown by example 5.7. On the positive
side, there is a nice characterization of smooth closed subschemes (Proposi-
tion 5.11). Also, the matrix jacobian criterion holds for formal schemes, see
Corollary 5.13 for a precise statement. In section 6 we combine these results
to obtain properties of étale morphisms. It is noteworthy to point out that
a smooth pseudo quasi-finite map need not be étale (Example 6.7).

The last section contains our main results. First we recover in our frame-
work the classical fact for usual schemes [EGA IV4, (17.9.1)] that an open
immersion is a map that is étale and radical (Theorem 7.3). We also char-
acterize completion morphisms as those pseudo closed immersions that are
flat. This and other characterizations are given in Proposition 7.5. Writing
a locally noetherian formal scheme Y as

Y = lim−→
n∈N

Yn

with respect to an Ideal of definition, Proposition 7.7 says that there is an
equivalence of categories between étale adic Y-formal schemes and étale Y0-
schemes. A special case already appears in [Y, Proposition 2.4]. In fact, this
result is a reinterpretation of [EGA IV4, (18.1.2)]. The factorization theo-
rems are based in Theorem 7.11 that says that an unramified morphism can
be factored locally into a pseudo closed immersion followed by an étale adic
map. As consequences we obtain Theorem 7.12 and Theorem 7.13. They
state that every smooth morphism and every étale morphism factor locally
as a completion morphism followed by a smooth adic morphism and an
étale adic morphism, respectively. These results explain the local structure
of smooth and étale morphisms of formal schemes. It has been remarked by
Lipman, Nayak and Sastry in [LNS, p. 132] that this observation may sim-
plify some developments related to Cousin complexes and duality on formal
schemes.

1. Preliminaries

We denote by NFS the category of the locally noetherian formal schemes
and by NFSaf the subcategory of locally noetherian affine formal schemes.
We write Sch for the category of ordinary schemes.

We assume that the reader is familiar with the basic theory of formal
schemes as is explained in [EGA I, §10]: formal spectrum, Ideal of definition
of a formal scheme, fiber product of formal schemes, functor M  M4

for modules over adic rings, completion of a usual scheme along a closed
subscheme, adic morphisms, separated morphisms, etc.

From now on and, except otherwise indicated, every formal scheme will
be in NFS. We will assume that every ring is noetherian and, therefore,
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that every complete ring and every complete module for an adic topology
are separated.

1.1. Henceforward, the following notation [EGA I, §10.6] will be used:
(1) Given X ∈ NFS and J ⊂ OX an Ideal of definition for each n ∈ N we

put Xn := (X,OX/J n+1) and we indicate that X is the direct limit
of the schemes Xn by

X = lim−→
n∈N

Xn.

The ringed spaces X and Xn have the same underlying topological
space, so we will not distinguish between a point in X or Xn.

(2) If f : X→ Y is in NFS, J ⊂ OX and K ⊂ OY are Ideals of definition
such that f∗(K)OX ⊂ J and fn : Xn := (X,OX/J n+1) → Yn :=
(Y,OY/Kn+1) is the morphism induced by f , for each n ∈ N, then
f is expressed as

f = lim−→
n∈N

fn.

(3) Furthermore, given f : X → Y a morphism in NFS and K ⊂ OY an
Ideal of definition, there exist J ⊂ OX an Ideal of definition such
that f∗(K)OX ⊂ J .

1.2. Let f : X→ Y a morphism in NFS and J ⊂ OX and K ⊂ OY Ideals of
definition such that f∗(K)OX ⊂ J . The morphism f is of pseudo finite type
(pseudo finite) [AJL1, p.7] if f0 (and in fact any fn) is of finite type (finite).
Moreover, if f is adic we say that f is of finite type (finite) [EGA I, 10.13.3]
([EGA III1, (4.8.2)]).

1.3. [AJP, Definition 2.1 and Definition 2.6] A morphism f : X→ Y in NFS
is smooth (unramified, étale) if it is of pseudo finite type and satisfies the
following lifting condition:

For all affine Y-schemes Z and for each closed subscheme T ↪→ Z given
by a square zero Ideal I ⊂ OZ the induced map

(1.3.1) HomY(Z,X) −→ HomY(T,X)

is surjective (injective, bijective).
Moreover, if f is adic we say that f is smooth adic (unramified adic, étale

adic).

1.4. (cf. [AJP, §3]) Given f : X → Y in NFS the differential pair of X

over Y, (Ω̂1
X/Y, d̂X/Y), is locally given by (Ω̂1

A/B, d̂A/B) for all open sets
U = Spf(A) ⊂ X and V = Spf(B) ⊂ Y with f(U) ⊂ V. The OX-Module
Ω̂1

X/Y is called module of 1-differentials of X over Y and the continuous

Y-derivation d̂X/Y is called canonical derivation of X over Y.

1.5. [EGA I, p. 442] A morphism f : Z → X in NFS is a closed immersion

if it factors as Z
g−→ X′ j

↪→ X where g is an isomorphism of Z into a closed
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subscheme X′ ↪→ X of the formal scheme X ([EGA I, (10.14.2)]). Let us recall
[EGA III1, (4.8.10)]: a morphism f : Z→ X in NFS is a closed immersion if it
is adic and given K ⊂ OX an Ideal of definition of X and J = f∗(K)OZ, the
corresponding Ideal of definition of Z the induced morphism f0 : Z0 → X0 is
a closed immersion, equivalently, the induced morphisms fn : Zn → Zn are
closed immersions for all n ∈ N.

A morphism f : Z → X in NFS is an open immersion if it factors as
Z

g−→ X′ ↪→ X where g is an isomorphism of Z into an open subscheme
X′ ↪→ X.

Definition 1.6. Let X be in NFS, J ⊂ OX an Ideal of definition and x ∈ X.
We define the topological dimension of X at x as

dimtopx X = dimx X0.

It is easy to see that the definition does not depend on the chosen Ideal of
definition of X. We define the topological dimension of X as

dimtopX = sup
x∈X

dimtopx X = sup
x∈X

dimx X0 = dim X0.

Given A an I-adic noetherian ring, put X = Spec(A) and X = Spf(A),
then dimtopX = dim A/I. Despite the only “visible part” of X in X =
Spec(A) is V (I), it happens that X \V (I) has a deep effect on the behavior
of X as we will see along this work. So apart from the topological dimension
of X, it is necessary to consider another notion of dimension that expresses
part of the “hidden” information: the algebraic dimension.

Definition 1.7. Let X be in NFS and J an Ideal of definition of X. Given
x ∈ X we define the algebraic dimension of X at x as

dimx X = dimOX,x.

The algebraic dimension of X is

dim X = sup
x∈X

dimx X.

Proposition 1.8. If X = Spf(A) with A an I-adic noetherian ring then
dim X = dim A.

Proof. For each x ∈ X, if px is the corresponding open prime ideal in A
we have that dimx X = dim A{px} = dim Apx since Apx ↪→ A{px} is a flat
extension of local rings with the same residue field (cf. [M1, (24.D)]). �

Example 1.9. Given A an I-adic noetherian ring and T = T1, T2, . . . , Tr

a finite number of indeterminates, the affine formal space of dimension r
over A is Ar

Spf(A) = Spf(A{T}) and the formal disc of dimension r over A

is Dr
Spf(A) = Spf(A[[T]]) (see [AJP, Example 1.6]). It holds that

dimtop Ar
Spf(A) = dim Ar

Spec(A/I) = dim A/I + r

dimtop Dr
Spf(A) = dim Spec(A/I) = dim A/I
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and
dim Ar

Spf(A) =
1.8

dim A{T} = dim A + r =
1.8

dim Spf(A) + r

dim Dr
Spf(A) =

1.8
dim A[[T]] = dim A + r =

1.8
dim Spf(A) + r.

From this examples, we see that the algebraic dimension of a formal
scheme does not measure the dimension of the underlying topological space.
In general, for X in NFS, dimx X ≥ dimtopx X, for any x ∈ X and, therefore

dim X ≥ dimtopX.

Moreover, if X = Spf(A) with A an I-adic ring then dim X ≥ dimtopX +
ht(I).

Definition 1.10. Let f : X → Y be in NFS and y ∈ Y. The fiber of f at
the point y is the formal scheme

f−1(y) = X×Y Spec(k(y)).

For example, if f : X = Spf(B) → Y = Spf(A) is in NFSaf we have that
f−1(y) = Spf(B⊗̂Ak(y)).

Example 1.11. Let Y = Spf(A) be in NFSaf and T = T1, T2, . . . , Tr. If
p : Ar

Y → Y is the canonical projection of the affine formal r-space over Y,
for all x ∈ Ar

Y and y = p(x) we have that

p−1(y) = Spf(A{T}⊗̂Ak(y)) = Spec(k(y)[T]) = Ar
Spec(k(y)).

If q : Dr
Y → Y is the canonical projection of the formal r-disc over Y, given

x ∈ Dr
Y and y = q(x), there results that

q−1(y) = Spf(A[[T]]⊗̂Ak(y)) = Spf(k(y)[[T]]) = Dr
Spec(k(y)).

1.12. Let f : X → Y be in NFS and let us consider J ⊂ OX and K ⊂ OY

Ideals of definition with f∗(K)OX ⊂ J . According to 1.1, the morphism f
can be written as f = lim−→

n∈N
(fn : Xn → Yn) with respect to the Ideals of

definition J and K . Then, by [EGA I, (10.7.4)] it holds that

f−1(y) = lim−→
n∈N

f−1
n (y)

where f−1
n (y) = Xn ×Yn Spec(k(y)), for each n ∈ N.

If f is adic, by base-change (cf. [AJP, 1.3]) we deduce that f−1(y) →
Spec(k(y)) is adic so, f−1(y) is a (ordinary) scheme and f−1(y) = f−1

n (y),
for all n ∈ N.

1.13. We will establish the following convention. Let f : X→ Y be in NFS,
x ∈ X and y = f(x) and assume that J ⊂ OX and K ⊂ OY are Ideals of
definition such that f∗(K)OX ⊂ J . From now and, except otherwise indi-
cated, whenever we consider the rings OX,x and OY,y we will associate them
the JOX,x and KOY,y-adic topologies, respectively. And we will denote by
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ÔX,x and ÔY,y the completion of OX,x and OY,y with respect to the JOX,x

and KOY,y-adic topologies, respectively.

Definition 1.14. Let f : X→ Y be in NFS. Given x ∈ X and y = f(x), we
define the relative algebraic dimension of f at x as

dimx f = dimx f−1(y)

If J ⊂ OX and K ⊂ OY are Ideals of definition such that f∗(K)OX ⊂ J ,
then

dimx f = dimOf−1(y),x = dimOX,x ⊗OY,y
k(y) = dim ÔX,x ⊗ÔY,y

k(y).

The topology in ÔX,x ⊗ÔY,y
k(y) is the J ÔX,x-adic then ÔX,x⊗̂ÔY,y

k(y) =

ÔX,x ⊗ÔY,y
k(y).

1.15. Given an adic morphism f : X → Y in NFS and Ideals of definition
J ⊂ OX and K ⊂ OY such that f∗(K)OX ⊂ J , then dimx f = dimx f0 for
every x ∈ X. For example:

(1) If p : Ar
Y := Ar

Z ×Z Y → Y is the canonical projection of the affine
formal r-space over Y, given x ∈ Ar

Y we have that

dimx p = dim k(y)[T] = r,

where y = p(x). In contrast, if q : Dr
Y := Dr

Z ×Z Y → Y is the
canonical projection of the formal r-disc over Y, x ∈ Dr

Y and y =
q(x) there results that

dimx q = dim k(y)[[T]] =
1.9

r > dim k(y) = 0

(2) If X is a usual noetherian scheme and X ′ is a closed subscheme of X,
recall that the morphism of completion of X along X ′, κ : X/X′ → X
([EGA I, (10.8.5)]) is not adic, in general. Note however that

dimx κ = dim k(x) = 0

for all x ∈ X/X′ .

2. Pseudo closed immersions and quasi-coverings

Definition 2.1. A morphism f : X → Y in NFS is a pseudo closed im-
mersion if there exists J ⊂ OX and K ⊂ OY Ideals of definition satisfy-
ing f∗(K)OX ⊂ J and such that the induced morphisms of usual schemes
{fn : Xn → Yn}n∈N are closed immersions.

Note that if f : X → Y is a pseudo closed immersion, f(X) is a closed
subset of Y.

Let us show that this definition does not depend on the chosen Ideals of
definition. Being a local question, we can assume that f : X = Spf(A) →
Y = Spf(B) is in NFSaf and that J = J4, K = K4 for ideals of definition
J ⊂ A and K ⊂ B such that KA ⊂ J . Then, given another pair of ideals of
definition J ′ ⊂ A and K ′ ⊂ B such that J ′ = J ′4 ⊂ OX, K′ = K ′4 ⊂ OY
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satisfying that f∗(K′)OX ⊂ J ′, there exists n0 > 0 such that Jn0 ⊂ J ′

and Kn0 ⊂ K ′. The morphism B → A induces the following commutative
diagrams

B/Kn0(n+1) → A/Jn0(n+1)

B/K ′n+1

↓
→ A/J ′n+1

↓

and it follows that B/K ′n+1 → A/J ′n+1 is surjective, for all n ∈ N. Then,
using 1.5, it follows that the morphism (X,OX/J ′n+1)→ (Y,OY/K′n+1) is
a closed immersion, for all n ∈ N.

Example 2.2. Let X be a noetherian scheme and X ′ ⊂ X a closed sub-
scheme defined by an Ideal I ⊂ OX . The morphism of completion X/X′

κ−→
X of X along X ′ ([EGA I, (10.8.5)]) is expressed as

lim−→
n∈N

(
(X ′,OX/In+1) κn−→ (X,OX)

)
,

therefore, it is a pseudo closed immersion.

Notice that an adic pseudo closed immersion is a closed immersion (cf.
1.5). However, to be a pseudo closed immersion is not a topological property:

Example 2.3. Given K a field, let p : D1
Spec(K) → Spec(K) be the canonical

projection. If we consider the Ideal of definition 〈T 〉4, of D1
Spec(K) then

p0 = 1Spec(K) is a closed immersion. However, the morphisms

pn : Spec(K[T ]/〈T 〉n+1)→ Spec(K)

are not closed immersions, for all n > 0 and, thus, p is not a pseudo closed
immersion.

Proposition 2.4. Let f : X → Y and g : Y → S be two morphisms in
NFS. It holds that:

(1) If f and g are (pseudo) closed immersions then g ◦ f is a (pseudo)
closed immersion.

(2) If f is a (pseudo) closed immersion, given h : Y′ → Y in NFS we
have that XY′ = X ×Y Y′ is in NFS and that f ′ : XY′ → Y′ is a
(pseudo) closed immersion.

Proof. It is known that adic morphisms are stable under composition and
base-change (cf. [AJP, 1.3]) so it suffices to show the properties for pseudo
closed immersions. As for (1) let J ⊂ OX, K ⊂ OY and L ⊂ OS be
Ideals of definition such that f∗(K)OX ⊂ J , g∗(L)OY ⊂ K and consider the
corresponding expressions for f and g as direct limit of scheme morphisms:

f = lim−→
n∈N

(Xn
fn−→ Yn) g = lim−→

n∈N
(Yn

gn−→ Sn)
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Since
g ◦ f = lim−→

n∈N
gn ◦ fn

the assertion follows from the stability under composition of closed immer-
sions in Sch. Let us show (2). Take K′ ⊂ OY′ an Ideal of definition with
h∗(K)OY′ ⊂ K′ and such that, by 1.1,

h = lim−→
n∈N

(hn : Y ′
n → Yn).

Then by [EGA I, (10.7.4)] we have that

XY′
f ′ → Y′

X

↓
f → Y

h

↓
= lim−→

n∈N


Xn ×Yn Y ′

n
f ′n→ Y ′

n

Xn

↓
fn→ Yn

hn

↓


By hypothesis, fn is a closed immersion and since closed immersions in
Sch are stable under base-change we have that f ′n is a closed immersion of
noetherian schemes, ∀n ∈ N. Finally, since f is a morphism of pseudo finite
type, from [AJP, Proposition 1.8.(2)] we have that XY′ is in NFS. �

Next we turn to the study of radical morphisms in the context of formal
schemes. This notion will allow us later (Theorem 7.3) to give a characteri-
zation of open immersions in terms of étale morphisms.

Definition 2.5. A morphism f : X→ Y in NFS is radical if given J ⊂ OX

and K ⊂ OY Ideals of definition such that f∗(K)OX ⊂ J the induced
morphism of schemes f0 : X0 → Y0 is radical.

Given x ∈ X, the residue fields of the local rings OX,x and OX0,x agree
and analogously for OY,f(x) and OY0,f0(x). Therefore the definition of radical
morphisms does not depend on the chosen Ideals of definition of X and Y.

2.6. From the sorites of radical morphisms in Sch it follows that:

(1) Radical morphisms are stable under composition and noetherian
base-change.

(2) Every monomorphism is radical. So, open immersions, closed im-
mersions and pseudo closed immersions are radical morphisms.

The notion of quasi-finite morphism of usual schemes [EGA I, Defini-
tion(6.11.3)] is based on the equivalence between several conditions for mor-
phisms between schemes (see Corollaire (6.11.2) in loc. cit.) that are no
longer equivalent in the full context of formal schemes. Specifically, we study
two notions that generalize that of quasi-finite morphism of usual schemes.
They will play a basic role in understanding the structure of unramified and
étale morphisms in NFS.
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Definition 2.7. Let f : X→ Y a pseudo finite type morphism in NFS. We
say that f is pseudo quasi-finite if there exist J ⊂ OX and K ⊂ OY Ideals
of definition with f∗(K)OX ⊂ J and such that f0 is quasi-finite. And f is
pseudo quasi-finite at x ∈ X if there exists an open neighborhood x ∈ U ⊂ X
such that f |U is pseudo quasi-finite.

Notice that if f : X → Y is a pseudo quasi-finite morphism (in NFS)
then, for all couples of Ideals of definition J ⊂ OX and K ⊂ OY such
that f∗(K)OX ⊂ J , the induced morphism of schemes f0 : X0 → Y0 is
quasi-finite.

As an immediate consequence of the analogous properties in Sch we have
that:

(1) Closed immersions, pseudo closed immersions and open immersions
are pseudo quasi-finite.

(2) Pseudo finite morphisms and finite morphisms are pseudo quasi-
finite.

(3) If f : X → Y and g : Y → S are pseudo quasi-finite morphisms,
then g ◦ f also is.

(4) If f : X→ Y is pseudo quasi-finite, given h : Y′ → Y a morphism in
NFS we have that f ′ : XY′ → Y′ is pseudo quasi-finite.

In Sch it is the case that a morphism is étale if, and only if, it is smooth
and quasi-finite. Nevertheless, we will show that in NFS not every smooth
and pseudo quasi-finite morphism is étale (see Example 6.7). That is why
we introduce a stronger notion than pseudo quasi-finite morphism and that
also generalizes quasi-finite morphisms in Sch: the quasi-coverings.

Definition 2.8. Let f : X → Y be a pseudo finite type morphism in NFS.
The morphism f is a quasi-covering if OX,x⊗̂OY,f(x)

k(f(x)) is a finite type
k(f(x))-module, for all x ∈ X. We say that f is a quasi-covering at x ∈ X if
there exists an open U ⊂ X with x ∈ U such that f |U is a quasi-covering.

We reserve the word covering for a dominant (i.e. with dense image)
quasi-covering. These kind of maps will play no role in the present work
but they are important, for instance, in the study of finite group actions on
formal schemes.

Example 2.9. If X is a locally noetherian scheme and X ′ ⊂ X is a closed
subscheme the morphism of completion κ : X = X/X′ → X is a quasi-
covering. In fact, for all x ∈ X we have that

OX,x⊗̂OX,κ(x)
k(κ(x)) = k(κ(x)).

Lemma 2.10. We have the following:
(1) Closed immersions, pseudo closed immersions and open immersions

are quasi-coverings.
(2) If f : X→ Y and g : Y→ S are quasi-coverings, the morphism g ◦f

is a quasi-covering.
(3) If f : X → Y is a quasi-covering, and h : Y′ → Y a morphism in

NFS, then f ′ : XY′ → Y′ is a quasi-covering.
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Proof. Inmediate. �

Proposition 2.11. If f : X→ Y is a quasi-covering in x ∈ X then:

dimx f = 0

Proof. It is a consequence of the fact that OX,x⊗̂OY,f(x)
k(f(x)) is an artinian

ring. �

Remark. Observe that given J ⊂ OX and K ⊂ OY Ideals of definition such
that f∗(J )OX ⊂ K, for all x ∈ X there results that

OX,x⊗̂OY,f(x)
k(f(x)) = lim←−

n∈N
OXn,x ⊗OYn,fn(x)

k(f(x)).

Over usual schemes quasi-coverings and pseudo quasi-finite morphisms are
equivalent notions. More generally we have the following.

Proposition 2.12. Let f : X→ Y be a morphism in NFS. If f is a quasi-
covering, then is pseudo quasi-finite. Furthermore, if f is adic the converse
holds.

Proof. Suppose that f is a quasi-covering and let J ⊂ OX and K ⊂ OY

be Ideals of definition such that f∗(K)OX ⊂ J . For x ∈ X and y = f(x),
OX,x⊗̂OY,y

k(y) is a finite k(y)-module and, therefore,

OX0,x

mY0,yOX0,x
=
OX,x

JOX,x
⊗OY0,y

k(y)

is k(y)-finite, so it follows that f is pseudo quasi-finite.
If f is an adic morphism, f−1(y) = f−1

0 (y) for each y ∈ Y then,

OX0,x/mY0,yOX0,x = OX,x⊗̂OY,y
k(y)

for all x ∈ X with y = f(x). If f is moreover pseudo quasi-finite, it follows
from [EGA I, Corollaire (6.11.2)] that f is a quasi-covering. �

Corollary 2.13. Every finite morphism f : X → Y in NFS is a quasi-
covering.

Proof. Finite morphisms are adic and pseudo quasi-finite. Therefore the
result is consequence of the last proposition. �

Nevertheless, by the next example, not every pseudo finite morphism is
a quasi-covering and, therefore, pseudo quasi-finite does not imply quasi-
covering for morphisms in NFS.

Example 2.14. For r > 0, the canonical projection p : Dr
X → X is not a

quasi-covering since

dimx p =
1.15.(1)

r > 0 ∀x ∈ X.

But considering an appropiate pair of ideals of definition, the scheme map
p0 = 1X0 is finite.
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2.15. In short, we have the following diagram of strict implications (with
the conditions that imply adic morphism in italics):

closed immersion ⇒ finite ⇒ quasi-covering
⇓ ⇓ ⇓

pseudo closed immersion ⇒ pseudo finite ⇒ pseudo quasi-finite

3. Flat morphisms and completion morphisms

In the first part of this section we discuss flat morphisms in NFS. When-
ever a morphism

f = lim−→
n∈N

fn

is adic, the local criterion of flatness for formal schemes (Proposition 3.3)
relates the flat character of f and that of the morphisms fn, for all n ∈ N. In
absence of the adic hypothesis this relation does not hold, though (Example
3.2). In the second part, we study the morphisms of completion in NFS, a
class of flat morphisms that are pseudo closed immersions (so, they are closed
immersions as topological maps). Despite the construction of the completion
of a formal scheme along a closed formal subscheme is clearly natural in
NFS, it has not been systematically developed in the basic references about
formal schemes. Morphisms of completion will be an essential ingredient in
the main theorems of Section 7, namely, Theorems 7.11, 7.12 and 7.13.

3.1. A morphism f : X→ Y is flat at x ∈ X if OX,x is a flat OY,f(x)-module.
We say that f is flat if it is flat at x, for all x ∈ X.

Given J ⊂ OX and K ⊂ OY Ideals of definition with f∗(K)OX ⊂ J , by
[B, III, §5.4, Proposition 4] the following are equivalent:

(1) f is flat at x ∈ X
(2) OX,x is a flat OY,f(x)-module
(3) ÔX,x is a flat OY,f(x)-module
(4) ÔX,x is a flat ÔY,f(x)-module

Example 3.2. If K is a field and A1
K = Spec(K[T ]) consider the closed

subset X ′ = V (〈T 〉) ⊂ A1
K . The canonical morphism of completion of A1

K
along X ′

D1
K

κ−→ A1
K

is flat but, the morphisms

Spec(K[T ]/〈T 〉n+1) κn−→ A1
K

are not flat, for every n ∈ N.

Proposition 3.3. (Local flatness criterion for formal schemes) Given an
adic morphism f : X → Y in NFS, K ⊂ OY, let J = f∗(K)OX ⊂ OX be
Ideals of definition and let {fn : Xn → Yn}n∈N be the morphisms induced by
f and K. The following assertions are equivalent:

(1) The morphism f is flat.
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(2) The morphism fn is flat, for all n ∈ N.
(3) The morphism f0 is flat.

Proof. We may suppose that f : X = Spf(A) → Y = Spf(B) is in NFS.
Then if K = K4 for an ideal of definition K ⊂ B, we have that J = (KA)4

and the proposition is a consequence of [AJL1, Lemma 7.1.1] and of the
local flatness criterion for rings (cf. [M2, Theorem 22.3]). �

Associated to a (usual) locally noetherian scheme X and a closed sub-
scheme of X ′ ⊂ X there is a locally noetherian formal scheme X/X′ , called
completion of X along X ′ and, a canonical morphism κ : X/X′ → X
([EGA I, (10.8.3) and (10.8.5)]). Next, we define the completion of a formal
scheme X along a closed formal subscheme X′ ⊂ X.

Definition 3.4. Let X be in NFS and X′ ⊂ X a closed formal subscheme
defined by a coherent Ideal I of OX. Given an Ideal of definition J of X
We define the completion of a sheaf F on X over X′, and it will be denoted
F/X′ , as the restriction to X′ of the sheaf

lim←−
n∈N

F
(J + I)n+1F

.

The definition does not depend neither on the chosen Ideal of definition J
of X nor on the coherent Ideal I that defines X′.

We define the completion of X along X′, and it will be denoted X/X′ , as
the topological ringed space whose underlying topological space is X′ and
whose sheaf of topological rings is OX/X′ .

It is easy to check that X/X′ satisfies the hypothesis of [EGA I, (10.6.3)
and (10.6.4)], from which we deduce that:

(1) The formal scheme X/X′ is locally noetherian.
(2) The Ideal (I +J )/X′ ⊂ OX/X′ defined by the restriction to X′ of the

sheaf

lim←−
n∈N

(J + I)
(J + I)n+1

is an Ideal of definition of X/X′ .
(3) It holds that OX/X′/((I + J )/X′)n+1 agrees with the restriction to

X′ of the sheaf OX/(J + I)n+1.

3.5. With the above notations, if Zn = (X′,OX/(J + I)n+1) for all n ∈ N,
by 1.1 we have that

X/X′ = lim−→
n∈N

Zn

For each n ∈ N, let Xn = (X,OX/J n+1) and X ′
n = (X′,OX/(J n+1 + I)).

The canonical morphisms
OX

J n+1
�

OX

(J + I)n+1
�

OX

J n+1 + I
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provide the closed immersions of schemes X ′
n

jn−→ Zn
κn−→ Xn, for all n ∈ N

such that the following diagrams are commutative:

X ′
m

jm→ Zm
κm→ Xm

X ′
n

↑

jn→ Zn

↑

κn→ Xn

↑

for all m ≥ n ≥ 0. Then by 1.1 we have the canonical morphisms in NFS

X′ j−→ X/X′
κ−→ X

where j is a closed immersion (see 1.5). The morphism κ as topological map
is the inclusion and it is called morphism of completion of X along X′.

Remark. Observe that κ is adic only if I is contained in a Ideal of definition
of X, in which case X = X/X′ and κ = 1X.

3.6. If X = Spf(A) is in NFSaf with A a J-adic noetherian ring, and X′ =
Spf(A/I) is a closed formal scheme of X, then

Γ(X/X′ ,OX/X′ ) = lim←−
n∈N

A

(J + I)n+1
=: Â

and from [EGA I, (10.2.2) and (10.4.6)] we have that X/X′ = Spf(Â) and the

morphisms X′ j−→ X/X′
κ−→ X correspond to the natural continuous morphisms

A→ Â→ A/I.

Proposition 3.7. Given X in NFS and X′ a closed formal subscheme of X,
the morphism of completion κ : X/X′ → X is a pseudo closed immersion and
étale (and therefore, from [AJP, Proposition 4.8], it is flat).

Proof. With the notations of 3.5 we have that

κ = lim−→
n∈N

κn.

Since κn is a closed immersion for all n ∈ N, it follows that κ is a pseudo
closed immersion. In order to prove that κ is an étale morphism we may
suppose that X = Spf(A) and X′ = Spf(A/I), where A is a J-adic noetherian
ring. Note that X/X′ = Spf(Â) where Â is the completion of A for the (J+I)-
adic topology and, therefore, is étale over A. By [AJP, 2.2], κ is an étale
morphism. �

Remark. In Theorem 7.5 we will see that the converse holds: every flat
pseudo closed immersion is a morphism of completion.

3.8. Given f : X → Y in NFS, let X′ ⊂ X and Y′ ⊂ Y be closed formal
subschemes given by Ideals I ⊂ OX and L ⊂ OY such that f∗(L)OX ⊂ I,
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that is, f(X′) ⊂ Y′. If J ⊂ OX and K ⊂ OY are Ideals of definition of X
and Y, respectively, such that f∗(K)OX ⊂ J . Let us denote for all n ∈ N

Xn = (X,OX/J n+1), Yn = (Y,OY/Kn+1),

Zn = (X′,OX/(J + I)n+1), Wn = (Y′,OY/(K + L)n+1)

X ′
n = (X′,OX/(J n+1 + I)) Y ′

n = (Y′,OX/(Kn+1 + L)).

Then the morphism f induces the following commutative diagram of locally
noetherian schemes:

Xn
fn → Yn

Xm
fm →

→ ↑

Ym

→

Zn

κn

↑

bfn→Wn

κ′n

Zm

κm
↑

bfm →
→ ↑

Wm

κ′m

↑

→

X ′
n

jn

↑

f ′n→ Y ′
n

j′n

X ′
m

jm
↑

f ′m →
→

Y ′
m

j′m

↑

→

for all m ≥ n ≥ 0. Note that

f ′ = lim−→
n∈N

f ′n

is the restriction f |X′ : X′ → Y′. Applying the direct limit over n ∈ N we
obtain a morphism

f̂ : X/X′ → Y/Y′

in NFS, such that the following diagram is commutative:

(3.8.1)

X
f → Y

X/X′

κ

↑

bf→ Y/Y′

κ′
↑

X′

↑

f |X′→ Y′

↑

We will call f̂ the completion of f along X′ and Y′.

3.9. Suppose that f : X = Spf(A) → Y = Spf(B) is in NFSaf and that
X′ = Spf(A/I) and Y′ = Spf(B/L) with LA ⊂ I. If J ⊂ A and K ⊂ B
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are Ideals of definition such that KA ⊂ J , the morphism f̂ : X/X′ → Y/Y′

corresponds to the morphism induced by B → A

B̂ → Â

(cf. [EGA I, (10.4.6)]) where Â is the completion of A for the (I + J)-adic
topology and B̂ denotes the completion of B for the (K + L)-adic topology.

Proposition 3.10. Given f : X→ Y in NFS, let Y′ ⊂ Y be a closed formal
subscheme and X′ = f−1(Y′). Then,

X/X′ = Y/Y′ ×Y X.

Proof. We may restrict to the case in which X = Spf(A), Y = Spf(B) and
Y′ = Spf(B/L) are affine formal schemes and J ⊂ A and K ⊂ B are
ideals of definition such that KA ⊂ J . By hypothesis, X′ = Spf(A/LA), so
X/X′ = Spf(Â) where Â is the completion of A for the (J+LA)-adic topology.
On the other hand, Y/Y′ = Spf(B̂) where B̂ denotes the completion of B
for the (K + L)-adic topology and it holds that

B̂⊗̂BA = B⊗̂BA = Â,

since J + (K + L)A = J + KA + LA = J + LA so we get the result. �

Proposition 3.11. Given f : X→ Y in NFS, consider X′ ⊂ X and Y′ ⊂ Y
closed formal subschemes such that f(X′) ⊂ Y′.

(1) Let P be one of the following properties of morphisms in NFS:

pseudo finite type, pseudo finite, pseudo closed immersion, pseudo
quasi-finite, quasi-covering, flat, separated, radical, smooth,

unramified, étale.

If f satisfies P, then so does f̂ .
(2) Moreover, if X′ = f−1(Y′), let Q be one of the following properties

of morphisms in NFS:

adic, finite type, finite, closed immersion, smooth adic, unramified
adic, étale adic.

Then, if f satisfies Q, then so does f̂ .

Proof. Suppose that f is flat and let us prove that f̂ is flat. The question
is local so we may assume f : X = Spf(A) → Y = Spf(B) in NFSaf ,
X′ = Spf(A/I) and Y′ = Spf(B/L) with LA ⊂ I. Let J ⊂ A and K ⊂ B be
ideals of definition such that KA ⊂ J and, Â and B̂ the completions of A
and B for the topologies given by (I+J) ⊂ A and (K+L) ⊂ B, respectively.
By [B, III, §5.4, Proposition 4] we have that the morphism B̂ → Â is flat
and, from 3.9 and [AJL1, Lemma 7.1.1] there results that f̂ is flat.
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Suppose that f satisfies any of the other properties P and let us prove
that f̂ inherits it, using the commutativity of the diagram

X
f→ Y

X/X′

κ

↑

bf→ Y/Y′

κ′
↑

where the vertical arrows are morphisms of completion. Since all of this
properties P are stable under composition and a morphism of completion
satisfies P (Proposition 3.7) we have that P holds for f ◦ κ = κ′ ◦ f̂ . If P is
smooth, unramified or étale the result is inmediate from [AJP, Proposition
2.13].

If P is any of the other properties, then closed inmersions verify P and
P is stable under composition and under base-change in NFS. Therefore,
since κ′ ◦ f̂ has P and κ′ is separated (Proposition 3.7), by the analogous
argument in NFS to the one in Sch [EGA I, (5.2.7), i), ii) ⇒ iii)] we get
that f̂ also satisfies P.

Finally, if f is adic, from Proposition 3.10 and from [AJP, 1.3], we deduce
that f̂ is adic. Then, if Q is any of the properties in statement (2) and f

satisfies Q, by (1) so does f̂ . �

4. Unramified morphisms

Let f : X → Y be a morphism of locally noetherian formal schemes.
Given J ⊂ OX and K ⊂ OY Ideals of definition such that f∗(K)OX ⊂ J ,
let us express f as a limit

f : X→ Y = lim−→
n∈N

(fn : Xn → Yn).

We begin relating the unramified character of f : X → Y and that of the
underlying ordinary scheme morphisms {fn}n∈N.

Proposition 4.1. With the previous notations, the morphism f is unram-
ified if, and only if, fn : Xn → Yn is unramified, for all n ∈ N.

Proof. Applying [AJP, Proposition 4.6] we have to show that Ω̂1
X/Y = 0 is

equivalent to Ω1
Xn/Yn

= 0, for all n ∈ N . If Ω̂1
X/Y = 0, by the Second

Fundamental Exact Sequence ([AJP, Proposition 3.13]) for the morphisms

Xn ↪→ X
f−→ Y,

we have that Ω1
Xn/Y = 0, for all n ∈ N. From the First Fundamental Exact

Sequence ([AJP, Proposition 3.10]) associated to the morphisms

Xn
fn−→ Yn ↪→ Y,
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there results that Ω1
Xn/Yn

= 0. The converse follows from the identification

Ω̂1
X/Y = lim←−

n∈N
Ω1

Xn/Yn

(cfr. [AJP, §1.9] ). �

Corollary 4.2. Let f : X → Y be a morphism in NFS and let J ⊂ OX

and K ⊂ OY be Ideals of definition such that f∗(K)OX ⊂ J . If the induced
morphisms fn : Xn → Yn are immersions for all n ∈ N, then f is unramified.

In the class of adic morphisms in NFS the following proposition provides
a criterion, stronger than the last result, to determine when a morphism f
is unramified.

Proposition 4.3. Let f : X→ Y be an adic morphism in NFS and K ⊂ OY

an Ideal of definition. Write

f = lim−→
n∈N

fn

by taking Ideals of definition K ⊂ OY and J = f∗(K)OX ⊂ OX. The
morphism f is unramified if, and only if, the induced morphism f0 : X0 → Y0

is unramified.

Proof. If f is unramified by Proposition 4.1 we have that f0 is unramified.
Conversely, suppose that f0 is unramified and let us prove that Ω̂1

X/Y = 0.
The question is local so we may assume that f : X = Spf(A)→ Y = Spf(B)
is in NFSaf and that J = J4, with J ⊂ A an ideal of definition. By
hypothesis Ω1

X0/Y0
= 0 and thus, since f is adic there results that

(4.3.1) Ω̂1
X/Y ⊗OX

OX0 =
[AJP, 3.8]

Ω1
X0/Y0

= 0.

Then by the equivalence of categories [EGA I, (10.10.2)], the last equality
says that Ω̂1

A/B/JΩ̂1
A/B = 0. Since A is a J-adic ring it holds that J is

contained in the Jacobson radical of A. Moreover, [AJP, Proposition 3.3]
implies that Ω̂1

A/B is a finite type A-module. From Nakayama’s lemma we

deduce that Ω̂1
A/B = 0 and therefore, Ω̂1

X/Y = (Ω̂1
A/B)4 = 0. Applying [AJP,

Proposition 4.6] it follows that f is unramified. �

The following example illustrates that in the non adic case the analogous
of the last proposition does not hold.

Example 4.4. Let K be a field and p : D1
K → Spec(K) be the projec-

tion morphism of the formal disc of dimension 1 over Spec(K). By [AJP,
Example 3.14] we have that Ω̂1

p = (K[[T ]]d̂T )4 and therefore, D1
K is rami-

fied over K ([AJP, Proposition 4.6]). However, given the ideal of definition
〈T 〉 ⊂ K[[T ]] the induced morphism p0 = 1Spec(K) is unramified.
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Let us consider for a morphism f : X→ Y in NFS the notation established
at the beginning of the section. In view of the example, our next goal will be
to determine when the morphism f such that f0 is unramified but f itself is
not necessarily adic, is unramified (Corollary 4.10). In order to do that, we
will need some results that describe the local behavior of unramified mor-
phisms. Next, we provide local characterizations of unramified morphisms
in NFS, generalizing the analogous properties in the category of schemes (cf.
[EGA IV4, (17.4.1)]).

Proposition 4.5. Let f : X → Y be a morphism in NFS of pseudo finite
type. Given x ∈ X and y = f(x) the following conditions are equivalent:

(1) f is unramified at x.
(2) f−1(y) is an unramified k(y)-formal scheme at x.
(3) mX,xÔX,x = mY,yÔX,x and k(x)|k(y) is a finite separable extension.
(4) Ω̂1

OX,x/OY,y
= 0

(4′) (Ω̂1
X/Y)x = 0

(5) OX,x is a formally unramified OY,y-algebra for the adic topologies.
(5′) ÔX,x is a formally unramified ÔY,y-algebra for the adic topologies.

Proof. Let J ⊂ OX andK ⊂ OY be Ideals of definition such that f∗(K)OX ⊂
J which allows us to write

f : X→ Y = lim−→
n∈N

(fn : Xn → Yn)

(1) ⇔ (2) By Proposition 4.1, f is unramified at x if, and only if, all the
morphisms fn : Xn → Yn are unramified at x. Applying [EGA IV4, (17.4.1)],
this is equivalent to f−1

n (y) being an unramified k(y)-scheme at x, for all
n ∈ N, which is also equivalent to

f−1(y) =
1.12

lim−→
n∈N

f−1
n (y)

being an unramified k(y)-formal scheme at x.
(1)⇔ (3) The assertion (1) is equivalent to fn : Xn → Yn being unramified

at x, for all n ∈ N, and from [EGA IV4, loc. cit.] there results that k(x)|k(y)
is a finite separable extension, and that mXn,x = mYn,yOXn,x, for all n ∈ N.
Hence,

mX,xÔX,x = lim←−
n∈N

mXn,x = lim←−
n∈N

mYn,yOXn,x = mY,yÔX,x.

(4)⇔ (4′) By [AJP, Proposition 3.3] it holds that (Ω̂1
X/Y)x is a finite type

OX,x-module and therefore,

Ω̂1
OX,x/OY,y

= ̂(Ω̂1
X/Y)x = (Ω̂1

X/Y)x ⊗OX,x
ÔX,x.

Then, since ÔX,x is a faithfully flat OX,x-algebra, Ω̂1
OX,x/OY,y

= 0 if, and

only if, (Ω̂1
X/Y)x = 0.
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(3) ⇒ (4) Since k(x)|k(y) is a finite separable extension we have that

Ω1
k(x)/k(y) = 0 and from [AJP, Proposition 3.3] Ω̂1

OX,x/OY,y
= ̂(Ω̂1

X/Y)x is a

finite type ÔX,x-module. Therefore, it holds that

Ω̂1
OX,x/OY,y

⊗ÔX,x
k(x) = Ω̂1

(OX,x⊗OY,y
k(y))/k(y) = Ω1

k(x)/k(y) = 0.

By Nakayama’s lemma, Ω̂1
OX,x/OY,y

= 0.
(4) ⇔ (5) It is straightforward from [EGA IV1, (0, 20.7.4)].
(5) ⇔ (5′) Inmediate.
(4′) ⇒ (1) Since Ω̂1

X/Y ∈ Coh(X) ([AJP, Proposition 3.3]), assertion (4′)
implies that there exists an open subset U ⊂ X with x ∈ U such that
(Ω̂1

X/Y)|U = 0 and therefore, by [AJP, Proposition 4.6] we have that f is
unramified at x. �

Corollary 4.6. Let f : X → Y be a pseudo finite type morphism in NFS.
The following conditions are equivalent:

(1) f is unramified.
(2) For all x ∈ X, f−1(f(x)) is an unramified k(f(x))-formal scheme at

x.
(3) For all x ∈ X, mX,xÔX,x = mY,f(x)ÔX,x and k(x)|k(f(x)) is a finite

separable extension.
(4) Ω̂1

OX,x/OY,f(x)
= 0, for all x ∈ X.

(4′) For all x ∈ X, (Ω̂1
X/Y)x = 0.

(5) For all x ∈ X, OX,x is a formally unramified OY,f(x)-algebra for the
adic topologies.

(5′) For all x ∈ X, ÔX,x is a formally unramified ÔY,f(x)-algebra for the
adic topologies.

Corollary 4.7. Let f : X → Y be a pseudo finite type morphism in NFS.
If f is unramified at x ∈ X, then f is a quasi-covering at x.

Proof. By assertion (3) of Proposition 4.5 we have that

OX,x⊗̂OY,f(x)
k(f(x)) = k(x)

with k(x)|k(f(x)) a finite extension and therefore, f is a quasi-covering at
x (see Definition 2.8). �

Corollary 4.8. Let f : X → Y be a pseudo finite type morphism in NFS.
If f is unramified at x ∈ X, then dimx f = 0.

Proof. It is straightforward from the previous Corollary and Proposition
2.11. �

Proposition 4.9. Let f : X→ Y be a pseudo finite type morphism in NFS.
Given x ∈ X and y = f(x) the following conditions are equivalent:

(1) f is unramified at x
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(2) f0 : X0 → Y0 is unramified at x and ÔX,x ⊗ÔY,y
k(y) = k(x)

Proof. If f is unramified at x, then f0 is unramified at x (Proposition 4.1).
Moreover, assertion (3) of Proposition 4.5 implies that ÔX,x ⊗ÔY,y

k(y) =
k(x) so (1) ⇒ (2) holds. Let us prove that (2) ⇒ (1). Since f0 is un-
ramified at x we have that k(x)|k(y) is a finite separable extension (cf.
[EGA IV4, (17.4.1)]). From the equality ÔX,x ⊗ÔY,y

k(y) = k(x) we deduce

that mX,xÔX,x = mY,yÔX,x. Thus, the morphism f and the point x satisfy
assertion (3) of Proposition 4.5 and there results that f is unramified at
x. �

Now we are ready to state the non adic version of Proposition 4.3:

Corollary 4.10. Given f : X→ Y a morphism in NFS of pseudo finite type
let J ⊂ OX and K ⊂ OY be Ideals of definition such that f∗(K)OX ⊂ J
and let f0 : X → Y be the induced morphism. The following conditions are
equivalent:

(1) The morphism f is unramified.
(2) The morphism f0 is unramified and, for all x ∈ X, f−1(y) = f−1

0 (y)
with y = f(x).

Proof. Suppose that f is unramified and fix x ∈ X and y = f(x). By
Proposition 4.9 we have that f0 is unramified and that ÔX,x ⊗ÔY,y

k(y) =

k(x). Therefore, J · (ÔX,x ⊗ÔY,y
k(y)) = 0 and applying Lemma 4.11 we

deduce that f−1(y) = f−1
0 (y). Reciprocally, suppose that (2) holds and let

us show that given x ∈ X, the morphism f is unramified at x. If y = f(x),
we have that f−1

0 (y) is an unramified k(y)-scheme at x (cf. [EGA IV4,
(17.4.1)]) and since f−1(y) = f−1

0 (y), from Proposition 4.5 there results
that f is unramified at x. �

Lemma 4.11. Let A be a J-adic noetherian ring such that for all open
prime ideals p ⊂ A, Jp = 0. Then J = 0 and therefore, the J-adic topology
in A is the discrete topology.

Proof. Since every maximal ideal m ⊂ A is open for the J-adic topology, we
have that Jm = 0, for all maximal ideal m ⊂ A, so J = 0. �

4.12. As a consequence of Corollary 4.10 there results that:
• If f : X → Y is an unramified morphism in NFS then f−1(y) is a

usual scheme for all x ∈ X being y = f(x).
• In Corollary 4.6 assertion (2) may be written:

(2′) For all x ∈ X, y = f(x), f−1(y) is a unramified k(y)-scheme at x.

From Proposition 4.5 we obtain the following result, in which we provide
a description of pseudo closed immersions that will be used in the charac-
terization of completion morphisms (Theorem 7.5).
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Corollary 4.13. Given f : X → Y in NFS, let J ⊂ OX and K ⊂ OY be
Ideals of definition such that f∗(K)OX ⊂ J and that let us express

f = lim−→
n∈N

fn.

The morphism f is a pseudo closed immersion if, and only if, f is unramified
and f0 : X0 → Y0 is a closed immersion.

Proof. If f is a pseudo closed immersion, by Corollary 4.2 there results that
f is unramified. Reciprocally, suppose that f is unramified and that f0 is a
closed immersion and let us show that fn : Xn → Yn is a closed immersion,
for each n ∈ N. By [EGA I, (4.2.2.(ii))] it suffices to prove that, for all
x ∈ X with y = f(x), the morphism OYn,y → OXn,x is surjective, for all
n ∈ N. Fix x ∈ X, y = f(x) ∈ Y and n ∈ N. Since f0 is a closed immersion,
by [EGA I, loc. cit.], we have that OY0,y → OX0,x is surjective and there-
fore, Spf(ÔX,x)→ Spf(ÔY,y) is a pseudo finite morphism, so, the morphism
OYn,y → OXn,x is finite. On the other hand, the morphism f is unrami-
fied therefore by Proposition 4.1 we get that fn is unramified and applying
Proposition 4.5 we obtain that mYn,yOXn,x = mXn,x. Then by Nakayama’s
lemma we conclude that OYn,y → OXn,x is a surjective morphism. �

5. Smooth morphisms

The contents of this section can be structured in two parts. In the first
part we study the relationship between the smoothness of a morphism

f = lim−→
n∈N

fn

in NFS and the smoothness of the ordinary scheme morphisms {fn}n∈N.
In the second part, we provide a local factorization for smooth morphisms
(Proposition 5.9). In this section we also prove in Corollary 5.13 the matrix
Jacobian criterion, that is a useful explicit condition in terms of a matrix
rank for determining whether a closed subscheme of the affine formal space
or of the affine formal disc is smooth or not.

Proposition 5.1. Given f : X → Y in NFS let J ⊂ OX and K ⊂ OY be
Ideals of definition with f∗(K)OX ⊂ J and let us write

f = lim−→
n∈N

fn.

If fn : Xn → Yn is smooth, for all n ∈ N, then f is smooth.

Proof. By [AJP, Proposition 4.1] we may assume that f is in NFSaf . Let Z
be an affine scheme, w : Z → Y a morphism, T ↪→ Z a closed Y-subscheme
given by a square zero Ideal and consider u : T → X a Y-morphism. Since
f and w are morphisms of affine formal schemes we find an integer m ≥ 0
such that w∗(Km+1)OZ = 0 and u∗(Jm+1)OT = 0 and therefore u and w

factors as T
um−−→ Xm

im−→ X and Z
wm−−→ Ym

im−→ Y, respectively. Since fm is
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formally smooth, there exists a Ym-morphism vm : Z → Xm such that the
following diagram is commutative

T ⊂ → Z

Xm

um

↓
fm →

vm

←
Ym

wm

↓

X

im

↓
f → Y.

↓

Thus the Y-morphism v := im ◦ vm satisfies that v|T = u and then, f is
formally smooth. Moreover, since f0 is a finite type morphism, it holds that
f is of pseudo finite type and therefore, f is smooth. �

Corollary 5.2. Let f : X → Y be an adic morphism in NFS and consider
K ⊂ OY an Ideal of definition. The morphism f is smooth if, and only if,
all the scheme morphisms {fn : Xn → Yn}n∈N, determined by the Ideals of
definition K ⊂ OY and J = f∗(K)OX, are smooth.

Proof. If f is adic, by [EGA I, (10.12.2)], we have that for each n ∈ N, the
diagram

X
f→ Y

Xn

↑

fn→ Yn

↑

is a cartesian square. Then by base-change ([AJP, Proposition 2.9 (2)])
we have that fn is smooth, for all n ∈ N. The reciprocal follows from the
previous proposition. �

Next example shows us that the reciprocal of Proposition 5.1 does not
hold in general.

Example 5.3. Let K be a field and A1
K = Spec(K[T ]). Given the closed

subset X = V (〈T 〉) ⊂ A1
K , Proposition 3.7 implies that the canonical com-

pletion morphism

D1
K

κ−→ A1
K

of A1
K along X is étale. However, picking in A1

K the Ideal of definition 0,
the morphisms

Spec(K[T ]/〈T 〉n+1) κn−→ A1
K

are not flat, whence it follows that κn can not be smooth for all n ∈ N (see
[AJP, Proposition 4.8]).
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Our next goal will be to determine the relation between smoothness of a
morphism

f = lim−→
n∈N

fn

and that of f0 (Corollaries 5.6 and 5.8). In order to do that, we need to
characterize smoothness locally.

Proposition 5.4. Let f : X→ Y be a pseudo finite type morphism in NFS.
Given x ∈ X and y = f(x) the following conditions are equivalent:

(1) The morphism f is smooth at x.
(2) OX,x is a formally smooth OY,y-algebra for the adic topologies.
(3) ÔX,x is a formally smooth ÔY,y-algebra for the adic topologies.
(4) The morphism f is flat at x and f−1(y) is a k(y)-formal scheme

smooth at x.

Proof. The question is local and f is of pseudo finite type, so we may
assume that f : X = Spf(A) → Y = Spf(B) is in NFSaf , with A =
B{T1, . . . , Tr}[[Z1, . . . , Zs]]/I and I ⊂ B′ := B{T1, . . . , Tr}[[Z1, . . . , Zs]] an
ideal ([AJP, Proposition 1.7]). Let p ⊂ A be the open prime ideal corre-
sponding to x, q ⊂ B′ the open prime such that p = q/I and r ⊂ B the
open prime ideal corresponding to y.

(1) ⇒ (3) Replacing X by a sufficiently small open neighborhood of x we
may suppose that A is a formally smooth B-algebra. Then, by [EGA IV1,
(0, 19.3.5)] we have that Ap is a formally smooth Br-algebra and [EGA IV1,
(0, 19.3.6)] implies that ÔX,x = Âp is a formally smooth ÔY,y = B̂r-algebra.

(2) ⇔ (3) It is a consequence of [EGA IV1, (0, 19.3.6)].
(3)⇒ (1) By [EGA IV1, (0, 19.3.6)], assertion (3) is equivalent to Ap being

a formally smooth Br-algebra. Then Zariski’s Jacobian criterion ([AJP,
Proposition 4.14] implies that the morphism of Âp-modules

Îq

I2
q

→ Ω1
B′

q/Br
⊗̂B′

q
Ap

is right invertible. Since Âp is a faithfully flat A{p}-algebra and the A{p}-
module(Ω̂1

B′/B ⊗B′ A){p} is projective (see [AJP, Proposition 4.8]), there
results that the morphism(

I

I2

)
{p}
→ (Ω̂1

B′/B ⊗B′ A){p}

is right invertible by [EGA IV1, (0, 19.1.14.(ii))]. From the equivalence of
categories [EGA I, (10.10.2)] we find an open subset U ⊂ X with x ∈ U such
that the morphism (

I

I2

)4
→ Ω̂1

Ds
Ar

Y
/Y ⊗ODs

Ar
Y

OX
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is right invertible in U. Now, by Zariski’s Jacobian criterion for formal
schemes ([AJP, Corollary 4.15]) it follows that f is smooth in U.

(3) ⇒ (4) By [EGA IV1, (0, 19.3.8)] we have that ÔX,x is a formally
smooth ÔY,y-algebra for the topologies given by the maximal ideals. Then it
follows from [EGA IV1, (0, 19.7.1)] that ÔX,x is ÔY,y-flat and by 3.1, f is flat
at x. Moreover from [EGA IV1, (0, 19.3.5)] we deduce that ÔX,x⊗ÔY,y

k(y)
is a formally smooth k(y)-algebra for the adic topologies or, equivalently, by
(3) ⇔ (1), f−1(y) is a k(y)-formal scheme smooth at x.

(4)⇒ (3) By 3.1 we have that Ap is a flat Br-module and therefore, there
results that

(5.4.1) 0→ Iq

rIq
→

B′
q

rB′
q

→ Ap

rAp
→ 0

is an exact sequence. On the other hand, since f−1(y) is a k(y)-formal
scheme smooth at x, from (1) ⇒ (2) we deduce that ÔX,x ⊗ÔY,y

k(y) is
a formally smooth k(y)-algebra for the adic topologies or, equivalently by
[EGA IV1, (0, 19.3.6)], Ap/rAp is a formally smooth k(r)-algebra for the
adic topologies. Applying Zariski’s Jacobian criterion ([AJP, Proposition
4.14]), we have that the morphism

Îq

I2
q

⊗Br k(r)→ (Ω̂1
B′/B)q⊗̂B′

q
Ap ⊗Br k(r)

is right invertible. Now, since (Ω̂1
B′/B)q is a projective B′

q-module (see [AJP,
Proposition 4.8]) by [EGA I, (0, 6.7.2)] we obtain that

Îq

I2
q

→ Ω̂1
B′

q/Br
⊗̂cB′

q
Âp

is right invertible. Then, by the Zariski’s Jacobian criterion, Ap is a formally
smooth Br-algebra for the adic topologies or, equivalently by [EGA IV1, (0,
19.3.6)], Âp is a formally smooth B̂r-algebra.

�

Corollary 5.5. Let f : X → Y be a pseudo finite type morphism in NFS.
The following conditions are equivalent:

(1) The morphism f is smooth.
(2) For all x ∈ X, OX,x is a formally smooth OY,f(x)-algebra for the adic

topologies.
(3) For all x ∈ X, ÔX,x is a formally smooth ÔY,f(x)-algebra for the adic

topologies.
(4) The morphism f is flat and f−1(f(x)) is a k(f(x))-formal scheme

smooth at x, for all x ∈ X.
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Corollary 5.6. Let f : X → Y be an adic morphism in NFS and K ⊂ OY

an Ideal of definition. Put
f = lim−→

n∈N
fn

using the Ideals of definition K ⊂ OY and J = f∗(K)OX ⊂ OX. Then, the
morphism f is smooth if, and only if, it is flat and the morphism f0 : X0 →
Y0 is smooth.

Proof. Since f is adic, the diagram

X
f→ Y

X0

↑

f0→ Y0

↑

is a cartesian square ([EGA I, (10.12.2)]). If f is smooth, by base-change
there results that f0 is smooth. Moreover by [AJP, Proposition 4.8] we have
that f is flat. Reciprocally, if f is adic, by 1.12, we have that f−1(f(x)) =
f−1
0 (f(x)), for all x ∈ X. Therefore, since f0 is smooth, by base-change

there results that f−1(f(x)) is a k(f(x))-scheme smooth at x, for all x ∈ X
and applying Corollary 5.5 we conclude that f is smooth. �

The upcoming example shows that the last result is not true without
assuming the adic hypothesis for the morphism f .

Example 5.7. Given K a field, let Pn
K be the n-dimensional projective

space and X ⊂ Pn
K a closed subscheme that is not smooth over K. If we

denote by (Pn
K)/X the completion of Pn

K along X, by Proposition 3.11 we
have that the morphism

(Pn
K)/X

f−→ Spec(K)

is smooth but f0 : X → Spec(K) is not smooth.

Corollary 5.8. Given f : X → Y a morphism in NFS let J ⊂ OX and
K ⊂ OY be Ideals of definition such that f∗(K)OX ⊂ J and with this choice
let us express

f = lim−→
n∈N

fn.

If f is flat, f0 : X0 → Y0 is a smooth morphism and f−1(f(x)) = f−1
0 (f(x)),

for all x ∈ X, then f is smooth.

Proof. Since f0 is smooth and f−1(y) = f−1
0 (y) for all y = f(x) with x ∈ X,

we deduce that f−1(y) is a smooth k(y)-scheme. Besides, by hypothesis f
is flat and Corollary 5.5 implies that f is smooth. �

Example 5.7 illustrates that the reciprocal of the last corollary does not
hold.

Every morphism f : X → Y smooth in Sch is locally a composition of
an étale morphism U → Ar

Y and a projection Ar
Y → Y . Proposition 5.9
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generalizes this fact for smooth morphisms in NFS. The same result has
already appeared stated in local form in [Y, Proposition 1.11]. We include
it here for completeness.

Proposition 5.9. Let f : X→ Y be a pseudo finite type morphism in NFS.
The morphism f is smooth at x ∈ X if, and only if, there exists an open
subset U ⊂ X with x ∈ U such that f |U factors as

U
g−→ An

Y
p−→ Y

where g is étale, p is the canonical projection and n = rg(Ω̂1
OX,x/OY,f(x)

).

Proof. As this is a local question, we may assume that f : X = Spf(A) →
Y = Spf(B) is a smooth morphism in NFSaf . By [AJP, Proposition 4.8]
and by [EGA I, (10.10.8.6)] we have that Ω̂1

A/B is a projective A-module of
finite type and therefore, if p ⊂ A is the open prime ideal corresponding
to x, there exists h ∈ A \ p such that Γ(D(h), Ω̂1

X/Y) = Ω̂1
A{h}/B is a free

A{h}-module of finite type. Put U = Spf(A{h}). Given {d̂a1, d̂a2, . . . , d̂an} a
basis of Ω̂1

A{h}/B consider the morphism of Y-formal schemes

U
g−→ An

Y = Spf(B{T1, T2, . . . , Tn})

defined by the continuous morphism of topological B-algebras

B{T1, T2, . . . , Tn} → A{h}
Ti  ai

See [EGA I, (10.2.2) and (10.4.6)]. The morphism g satisfies that f |U = p◦g.
Moreover, we deduce that g∗Ω̂1

An
Y/Y
∼= Ω̂1

X/Y (see the definition of g) and by

[AJP, Corollary 4.13] we have that g is étale. �

Corollary 5.10. Let f : X → Y be a smooth morphism at x ∈ X and
y = f(x). Then

dimx f = rg(Ω̂1
OX,x/OY,y

).

Proof. Put n = rg(Ω̂1
OX,x/OY,y

). By Proposition 5.9 there exists U ⊂ X with

x ∈ U such that f |U factors as U
g−→ An

Y

p−→ Y where g is an étale morphism
and p is the canonical projection. Applying [AJP, Proposition 4.8] we have
that f |U and g are flat morphisms and therefore,

dimx f = dim ÔX,x ⊗ÔY,y
k(y) = dim ÔX,x − dim ÔY,y

dimx g = dim ÔX,x ⊗ ̂OAn
Y

,g(x)
k(g(x)) = dim ÔX,x − dim ÔAn

Y,g(x).

Now, since g is unramified by Corollary 4.8 we have that dimx g = 0 and
therefore dimx f = dim ÔAn

Y,g(x) − dim ÔY,y = n. �
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Proposition 5.11. Let f : X→ Y be a morphism of pseudo finite type and
X′ ↪→ X a closed immersion given by the Ideal I ⊂ OX and put f ′ = f |X′.
If f is smooth at x ∈ X′, n = dimx f and y = f(x) the following conditions
are equivalent:

(1) The morphism f ′ is smooth at x and dimx f ′−1(y) = n−m.
(2) The sequence of OX-modules

0→ I
I2
→ Ω̂1

X/Y ⊗OX
OX′ → Ω̂1

X′/Y → 0

is exact2 at x and, on a neighborhood of x, the displayed OX′-Modules
are locally free of ranks m, n and n−m, respectively.

Proof. Since f : X→ Y is a smooth morphism at x, replacing X, if necessary,
by a smaller neighborhood of x, we may assume that f : X = Spf(A) →
Y = Spf(B) is a morphism in NFSaf smooth at x and that X′ = Spf(A/I).
Therefore, applying [AJP, Proposition 4.8] and Corollary 5.10 we have that
Ω̂1

X/Y is a locally free OX-Module of rank n.
Let us prove that (1) ⇒ (2). Replacing, again, if it is necessary X′ by a

smaller neighborhood of x, we may also assume that f ′ : X′ → Y is a smooth
morphism. Then, by an argument along the lines of the previous paragraph,
there results that Ω̂1

X′/Y is a locally free OX′-Module of rank n−m. Zariski’s
Jacobian criterion for formal schemes ([AJP, Corollary 4.15]) implies that
the sequence

0→ I
I2
→ Ω̂1

X/Y ⊗OX
OX′ → Ω̂1

X′/Y → 0

is exact and split, from where we deduce that I/I2 is a locally free OX′-
Module of rank m.

Reciprocally, applying [EGA I, (0, 5.5.4)] to the Second Fundamental
Exact Sequence ([AJP, Proposition 3.13]) associated to the morphisms X′ ↪→
X

f−→ X, we deduce that there exists an open formal subscheme U ⊂ X′ with
x ∈ U such that

0→
(
I
I2

)
|U → (Ω̂1

X/Y ⊗OX
OX′)|U → (Ω̂1

X′/Y)|U → 0

is exact and split. From Zariski’s Jacobian criterion it follows that f ′|U is
smooth and therefore, f ′ is smooth at x. �

Locally, a pseudo finite type morphism f : X→ Y factors as U
j

↪→ Dr
As

Y

p−→
Y where j is a closed immersion (see [AJP, Proposition 1.7]). In Corollary
5.13 we provide a criterion in terms a matrix rank that tells whether U is
smooth over Y or not.

2Let (X,OX) be a ringed space. We say that the sequence of OX -Modules 0 → F →
G → H → 0 is exact at x ∈ X if, and only if, 0 → Fx → Gx → Hx → 0 is an exact
sequence of OX,x-modules.
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5.12. Given Y = Spf(A) in NFSaf consider X ⊂ Ds
Ar

Y
a closed formal sub-

scheme given by an Ideal I = I4 with I = 〈g1 , g2, . . . , gk〉 ⊂ A{T}[[Z]]
being T = T1, T2, . . . , Tr and Z = Z1, Z2, . . . , Zs two sets of of indetermi-
nates. From [AJP, 3.14] we have that

{d̂T1, . . . , d̂Tr, d̂Z1, . . . , d̂Zs}

is a basis of Ω̂1
A{T}[[Z]]/A and also that given g ∈ A{T}[[Z]] it holds that:

d̂g =
r∑

i=1

∂g

∂Ti
d̂Ti +

s∑
j=1

∂g

∂Zj
d̂Zj

where d̂ is the complete canonical derivation of A{T}[[Z]] over A. For all
g ∈ A{T}[[Z]], w ∈ {d̂T1, . . . , d̂Tr, d̂Z1, . . . , d̂Zs} and x ∈ X, denote by
∂g
∂w (x) the image of ∂g

∂w ∈ A{T}[[Z]] in k(x). We will call

JacX/Y(x) =


∂g1

∂T1
(x) . . . ∂g1

∂Tr
(x) ∂g1

∂Z1
(x) . . . ∂g1

∂Zs
(x)

∂g2

∂T1
(x) . . . ∂g2

∂Tr
(x) ∂g2

∂Z1
(x) . . . ∂g2

∂Zs
(x)

...
. . .

...
...

. . .
...

∂gk
∂T1

(x) . . . ∂gk
∂Tr

(x) ∂gk
∂Z1

(x) . . . ∂gk
∂Zs

(x)

 .

the Jacobian matrix of X over Y at x. This matrix depends on the chosen
generators of I and therefore, the notation JacX/Y(x) is not completely
accurate.

Corollary 5.13. (Jacobian criterion for the affine formal space and the
affine formal disc). With the previous notations, the following assertions
are equivalent:

(1) The morphism f : X→ Y is smooth at x and dimx f = r + s− l.
(2) There exists a subset {g1, , g2, . . . , gl} ⊂ {g1 , g2, . . . , gk} such that
Ix = 〈g1 , g2, . . . , gl〉OX,x and rg(JacX/Y(x)) = l.

Proof. Assume (1). By Proposition 5.11 we have that the sequence

0→ I
I2
→ Ω̂1

Ds
Ar

Y
/Y ⊗ODs

Ar
Y

OX → Ω̂1
X/Y → 0

is exact at x and the corresponding OX-Modules are locally free, in a neigh-
borhood of x, of ranks l, r + s and r + s− l, respectively. Therefore,

(5.13.1) 0→ I
I2
⊗OX

k(x)→ Ω̂1
Ds

Ar
Y

/Y ⊗ODs
Ar

Y

k(x)→ Ω̂1
X/Y ⊗OX

k(x)→ 0

is an exact sequence of k(x)-vector spaces of dimension l, r + s, r + s − l,
respectively. Thus, there exists a set {g1, g2, . . . , gl} ⊂ {g1, g2, . . . , gk} such
that {g1(x), g2(x), . . . , gl(x)} provides a basis of I/I2 ⊗OX

k(x) at x. By
Nakayama’s lemma there results that Ix = 〈g1 , g2, . . . , gl〉OX,x. Besides,
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from the exactness of the sequence (5.13.1) and from the equivalence of
categories [EGA I, (10.10.2)] we deduce that the set

{d̂g1(x), d̂g2(x), . . . , d̂gl(x)} ⊂ Ω̂1
A{T}[[Z]]/A ⊗A{T}[[Z]] k(x)

is linearly independent. Therefore, rg(JacX/Y(x)) = l.
Conversely, from the Second Fundamental Exact Sequence associated to

the morphisms X ↪→ Ds
Ar

Y
→ Y [AJP, Proposition 3.13] we get the exact

sequence
I
I2
⊗OX

k(x)→ Ω̂1
Ds

Ar
Y

/Y ⊗ODs
Ar

Y

k(x)→ Ω̂1
X/Y ⊗OX

k(x)→ 0.

Since rg(JacX/Y(x)) = l, we have that

{d̂g1(x), , d̂g2(x), . . . , d̂gl(x)} ⊂ Ω̂1
A{T}[[Z]]/A ⊗A{T}[[Z]] k(x)

is a linearly independent set. Extending this set to a basis of the vector
space Ω̂1

A{T}[[Z]]/A ⊗A{T}[[Z]] k(x), by Nakayama’s lemma we find a basis

B ⊂ Ω̂1
A{T}[[Z]]/A such that {d̂g1, d̂g2, . . . , d̂gl} ⊂ B and therefore

{d̂g1, , d̂g2, . . . , d̂gl} ⊂ Ω̂1
A{T}[[Z]]/A ⊗A{T}[[Z]] A{T}[[Z]]/I

is a linearly independent set at x. Thus the set {g1 , g2,, . . . , gl} provides a
basis of I/I2 at x and by the equivalence of categories [EGA I, (10.10.2)]
we have that the sequence of OX-Modules

0→ I
I2
→ Ω̂1

Ds
Ar

Y
/Y ⊗ODs

Ar
Y

OX → Ω̂1
X/Y → 0

is split exact at x of locally free Modules of ranks l, r + s and r + s − l,
respectively. Applying Proposition 5.11 there results that f is smooth at x
and dimx f = r + s− l. �

Notice that the matrix form of the Jacobian criterion for the affine formal
space and the affine formal disc (Corollary 5.13) generalize the usual matrix
form of the Jacobian criterion for the affine space in Sch ([AlKl, Ch. VII,
Theorem (5.14)]).

6. Étale morphisms

The main part of the results of this section are consequence of that ob-
tained in Sections 4 and 5. These results will allow us to characterize in
Section 7 two important classes of étale morphisms: open immersions and
completion morphisms.

Proposition 6.1. Given f : X → Y in NFS let J ⊂ OX and K ⊂ OY be
Ideals of definition with f∗(K)OX ⊂ J . Using them, let us write

f = lim−→
n∈N

fn.

If fn : Xn → Yn is étale, ∀n ∈ N, then f is étale.
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Proof. The sum of Proposition 4.1 and Proposition 5.1. �

Corollary 6.2. Let f : X → Y be an adic morphism in NFS and K ⊂ OY

an Ideal of definition. Consider {fn}n∈N the direct system of morphisms of
schemes associated to the Ideals of definition K ⊂ OY and J = f∗(K)OX ⊂
OX. The morphism f is étale if, and only if, the morphisms fn : Xn → Yn

are étale ∀n ∈ N.

Proof. It follows from Proposition 4.1 and Corollary 5.2. �

Proposition 6.3. Let f : X→ Y be an adic morphism in NFS and let f0 :
X0 → Y0 be the morphism of schemes associated to the Ideals of definition
K ⊂ OY and J = f∗(K)OX ⊂ OX. Then, f is étale if, and only if, f is flat
and f0 is étale.

Proof. Put together Proposition 4.3 and Corollary 5.6. �

Note that example 5.3 on page 24 shows that in the non adic case the last
two results do not hold and also that, in general, the converse of Proposition
6.1 is not true.

Proposition 6.4. Let f be a pseudo finite type morphism in NFS and J ⊂
OX and K ⊂ OY Ideals of definition such that f∗(K)OX ⊂ J and, with this
choice, let us write

f = lim−→
n∈N

fn.

If f0 : X0 → Y0 is étale, f is flat and f−1(f(x)) = f−1
0 (f(x)), for all x ∈ X,

then f is étale.

Proof. It follows from Corollary 4.10 and Corollary 5.8. �

Example 5.3 shows that the reciprocal of the last result is not true. Next
Proposition gives us a local characterization of étale morphisms.

Proposition 6.5. Let f : X → Y be a morphism in NFS of pseudo finite
type, let x ∈ X and y = f(x), the following conditions are equivalent:

(1) f is étale at x.
(2) OX,x is a formally étale OY,y-algebra for the adic topologies.
(2′) ÔX,x is a formally étale ÔY,y-algebra for the adic topologies.
(3) f is flat at x and f−1(y) is a k(y)-formal scheme étale at x.
(4) f is flat and unramified at x.
(4′) f is flat at x and (Ω̂1

X/Y)x = 0.
(5) f is smooth at x and a quasi-covering at x.

Proof. Applying Proposition 4.5 and Proposition 5.4 we have that

(5)⇐ (1)⇔ (2)⇔ (2′)⇔ (3)⇒ (4)⇔ (4′).

Let C := ÔX,x⊗ÔY,y
k(y). To show (4)⇒ (5), by Corollary 4.7 it is only left

to prove that f is smooth at x. By hypothesis, we have that f is unramified
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at x and by Proposition 4.5, there results that C = k(x) and k(x)|k(y) is a
finite separable extension, therefore, formally étale. Since f is flat at x, by
Proposition 5.4 we conclude that f is smooth at x.

To prove that (5) ⇒ (1), it suffices to check that f is unramified at x or,
equivalently by Proposition 4.5, that C = k(x) and that k(x)|k(y) is a finite
separable extension. As f is smooth at x, applying Proposition 5.4, we have
that ÔX,x is a formally smooth ÔX,x-algebra for the adic topologies. Then
by base-change there results that C is a formally smooth k(y)-algebra. By
[EGA IV1, (0, 19.3.8)] we have that C is a formally smooth k(y)-algebra
for the topologies given by the maximal ideals and from [M2, Lemma 1, p.
216] it holds that C is a regular local ring. Besides, by hypothesis we have
that C is a finite k(y)-module, therefore, an artinian ring, so C = k(x).
Since k(x) = C is a formally smooth k(y)-algebra we have that k(x)|k(y) is
a separable extension (cf. [EGA IV1, (0, 19.6.1)]). �

Corollary 6.6. Let f : X → Y be a pseudo finite type morphism in NFS.
The following conditions are equivalent:

(1) f is étale.
(2) For all x ∈ X, OX,x is a formally étale OY,f(x)-algebra for the adic

topologies.
(2′) For all x ∈ X, ÔX,x is a formally étale ÔY,f(x)-algebra for the adic

topologies.
(3) For all x ∈ X, f−1(f(x)) is a k(f(x))-formal scheme étale at x and

f is flat.
(4) f is flat and unramified.
(4′) f is flat and Ω̂1

X/Y = 0.
(5) f is smooth and a quasi-covering.

Example 6.7. Given a field K, the canonical morphism of projection D1
K →

Spec(K) is smooth, pseudo quasi-finite but it is not étale.

In Sch a morphism is étale if, and only if, it is smooth and quasi-finite.
The previous example shows that in NFS there are smooth and pseudo quasi-
finite morphisms that are not étale. That is why we consider quasi-coverings
in NFS (see Definition 2.8) as the right generalization of quasi-finite mor-
phisms in Sch.

7. Structure theorems of the infinitesimal lifting properties

We begin with two results that will be used in the proof of the remainder
results of this section.

Proposition 7.1. In NFS let us consider a formally étale morphism f :
X → Y, a morphism g : S → Y and L ⊂ OS an Ideal of definition of S.
Let us write with respect to L

S = lim−→
n∈N

Sn.
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If h0 : S0 → X is a morphism in NFS that makes the diagram

S0
⊂ → S

X

h0

↓
f→ Y

g
↓

commutative, where S0 ↪→ S is the canonical closed immersion, then there
exists a unique Y-morphism l : S→ X in NFS such that l|S0 = h0.

Proof. By induction on n we are going to construct a collection of morphisms
{hn : Sn → X}n∈N such that the diagrams

Sn−1

Sn
⊂ →

→
S

→

X

hn

↓
f →

hn−1

→

Y

g

↓

commute. For n = 1, by [AJP, 2.4] there exists a unique morphism h1 :
S1 → X such that h1|S0 = h0 and g|S1 = f ◦ h1. Let now n ∈ N, if
we already have for all 0 < k < n morphisms hk : Sk → X such that
hk|Sk−1

= hk−1 and g|Sk
= f ◦ hk, by [AJP, loc. cit.] there exists an unique

morphism hn : Sn → X such that hn|Sn−1 = hn−1 and g|Sn = f ◦ hn. It is
straightforward that

l := lim−→
n∈N

hn

is a morphism of formal schemes and is the unique such that the diagram

S0
⊂ → S

X

h0↓
→
h

←
Y

g
↓

commutes. �

Corollary 7.2. Let f : X → Y be an étale morphism in NFS and J ⊂
OX and K ⊂ OY Ideals of definition with f∗(K)OX ⊂ J such that the
corresponding morphism f0 : X0 → Y0 is an isomorphism. Then f is an
isomorphism.
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Proof. By Proposition 7.1 there exists a unique morphism g : Y → X such
that the following diagram is commutative

Y0
⊂ → Y

X0

f−1
0 ↓

X

↓

∩

f →

g

←

Y

1Y

↓

Then, by [AJP, Proposition 2.13] it follows that g is an étale morphism.
Thus, applying Proposition 7.1 we have that there exists an unique mor-
phism f ′ : X→ Y such that the following diagram is commutative

X0
⊂ → X

Y0

f0↓

Y

↓

∩

g →

f ′

←

X.

1X

↓

Necessarily f = f ′ and f is a isomorphism. �

In Sch open immersions are characterized as being those étale morphisms
that are radical (see [EGA IV4, (17.9.1)]). In the following theorem we
extend this characterization and relate open immersions in formal schemes
with their counterparts in schemes.

Theorem 7.3. Let f : X → Y be a morphism in NFS. The following
conditions are equivalent:

(1) f is an open immersion.
(2) f is adic, flat and if K ⊂ OY an Ideal of definition suchh that J =

f∗(K)OX ⊂ OX, the associated morphism of schemes f0 : X0 → Y0

is an open immersion.
(3) f is adic étale and radical.
(4) There are J ⊂ OX and K ⊂ OY Ideals of definition satisfying that

f∗(K)OX ⊂ J such that the morphisms fn : Xn → Yn are open
immersions, for all n ∈ N.

Proof. The implication (1) ⇒ (2) is immediate. Given K ⊂ OY an Ideal of
definition, assume (2) and let us show (3). Since f0 is an open immersion,
is radical, so, f is radical (see Definition 2.5 and its attached paragraph).
Furthermore, f is flat and f0 is an étale morphism then f is étale (see
Proposition 6.3). Let us prove that (3) ⇒ (4). Given K ⊂ OY an Ideal of
definition and J = f∗(K)OX, by Corollary 6.2 the morphisms fn : Xn → Yn

are étale, for all n ∈ N. The morphisms fn are also radical for all n ∈ N
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(see Definition 2.5) and thus by [EGA IV4, (17.9.1)] it follows that fn is an
open immersion, for all n ∈ N. Finally, suppose that (4) holds and let us
see that f is an open immersion. With the notations of (4), there exists an
open subset U0 ⊂ Y0 such that f0 factors as

X0
f ′0−→ U0

i0
↪→ Y0

where f ′0 is an isomorphism and i0 is the canonical inclusion. Let U ⊂ Y be
the open formal subscheme with underlying topological space U0. Since the
open immersion i : U → Y is étale, then Proposition 7.1 implies that there
exists a morphism f ′ : X→ U of formal schemes such that the diagram:

X
f → Y

U

i

⊂

→f ′

→

X0

∪

↑

f0 → Y0

∪

↑

U0

↑

i0

⊂

→
f ′0 →

is commutative. Since the morphisms fn are étale, for all n ∈ N, Proposition
6.1 implies that f is étale. By [AJP, Proposition 2.13] we have that f ′ is
étale and applying Corollary 7.2, f ′ is an isomorphism and therefore, f is
an open immersion. �

Corollary 7.4. Let f : X → Y be a pseudo finite type morphism in NFS.
Then f is unramified if, and only if, the diagonal morphism ∆f : X→ X×YX
is an open embedding.

Proof. Take J ⊂ OX and K ⊂ OY Ideals of definition such that f∗(K)OX ⊂
J and the map f can be expressed as the limit of maps of usual schemes
fn : Xn → Yn. The morphism f : X → Y is unramified if, and only if, fn

is unramified for all n ∈ N by Proposition 4.1. By [EGA IV4, Corollaire
(17.4.2)] this is equivalent to ∆fn : Xn → Xn ×Yn Xn being an open em-
bedding for all n ∈ N. But this, in turn, is equivalent to the fact that
∆f : X→ X×Y X is an open embedding by Theorem 7.3. �

Every completion morphism is a pseudo closed immersion that is flat (cf.
Proposition 3.7). Next, we prove that this condition is also sufficient. Thus,
we obtain a criterion to determine whether a Y-formal scheme X is the
completion of Y along a closed formal subscheme.

Theorem 7.5. Let f : X→ Y be a morphism in NFS and let J ⊂ OX and
K ⊂ OY be Ideals of definition such that f∗(K)OX ⊂ J . Let us write f0 :
X0 → Y0 the corresponding morphism of ordinary schemes. The following
conditions are equivalent:
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(1) There exists a closed formal subscheme Y′ ⊂ Y such that X = Y/Y′

and f is the morphism of completion of Y along Y′.
(2) The morphism f is a flat pseudo closed immersion.
(3) The morphism f is étale and f0 : X0 → Y0 is a closed immersion.
(4) The morphism f is a smooth pseudo closed immersion.

Proof. The implication (1) ⇒ (2) is Proposition 3.7. Let us show that (2)
⇒ (3). Since f is a pseudo closed immersion, by Corollary 4.13 we have
that f is unramified. Then as f is flat, Corollary 6.6 establishes that f is
étale. The equivalence (3) ⇔ (4) is consequence of Corollary 4.13. Finally,
we show that (3) ⇒ (1). By hypothesis, the morphism f0 : X0 → Y is
a closed immersion. Consider κ : Y/X0

→ Y the morphism of completion
of Y along X0 and let us prove that X and Y/X0

are Y-isomorphic. By
Proposition 3.7 the morphism κ is étale so, applying Proposition 7.1, we
have that there exists a Y-morphism ϕ : X→ Y/X0

such that the following
diagram is commutative

X
f → Y

Y/X0

κ →ϕ

→

X0

∪

↑

f0 → Y0

∪

↑

X0

∪

↑

f0

⊂

→
ϕ0=1X0

→

From [AJP, Proposition 2.13] there results that ϕ is étale and then by Corol-
lary 7.2 we get that ϕ is an isomorphism. �

Remark. A consequence of the proof of (3) ⇒ (1) is the following: Given Y
in NFS and a closed formal subscheme Y′ ⊂ Y defined by the Ideal I ⊂ OY,
then for every Ideal of definition K ⊂ OY of Y, it holds that

Y/Y′ = Y/Y ′
0

where Y ′
0 = (Y′,OY/(I +K)).

7.6. Given a scheme Y and a closed subscheme Y0 ⊂ Y with the same
topological space, the functor X  X×Y Y0 defines an equivalence between
the category of étale Y -schemes and the category of étale Y0-schemes by
[EGA IV4, (18.1.2)]. In the next theorem we extend this equivalence to
the category of locally noetherian formal schemes. A special case of this
theorem, namely when Y is smooth over a noetherian ordinary base scheme,
appears in [Y, Proposition 2.4].

Proposition 7.7. Let Y be in NFS and K ⊂ OY an Ideal of definition such
that

Y = lim−→
n∈N

Yn.
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Then the functor

étale adic Y-formal schemes F−→ étale Y0-schemes
X  X×Y Y0

is an equivalence of categories.

Proof. By [McL, IV, §4, Theorem 1] it suffices to prove that: (a) F is full
and faithful; (b) Given X0 an étale Y0-scheme there exists an étale adic
Y-formal scheme X such that F (X) = X×Y Y0

∼= X0.
The assertion (a) is an immediate consequence of Proposition 7.1.
Let us show (b). Given X0 an étale Y0-scheme in Sch by [EGA IV4,

(18.1.2)] there exists X1 a locally noetherian étale Y1-scheme such that
X1 ×Y1 Y0

∼= X0. Reasoning by induction on n ∈ N and using [EGA IV4,
loc. cit.], we get a family {Xn}n∈N such that, for all n ∈ N, Xn is a locally
noetherian étale Yn-scheme and Xn ×Yn Yn−1

∼= Xn−1, for n > 0. Then

X := lim−→
n∈N

Xn

is a locally noetherian adic Y-formal scheme (by [EGA I, (10.12.3.1)]),

X×Y Y0 =
[EGA I, (10.7.4)]

lim−→
n∈N

(Xn ×Yn Y0) = X0

and X is an étale Y-formal scheme (see Proposition 6.1). �

Remark. It seems plausible that there is a theory of an algebraic fundamental
group for formal schemes that classifies adic étale surjective maps onto a
noetherian formal scheme X. If this is the case, the previous theorem would
imply that it agrees with the fundamental group of X0. We also consider
feasible the existence of a bigger fundamental group classifying arbitrary
étale surjective maps onto a noetherian formal scheme X, that would give
additional information about X.

Corollary 7.8. Let f : X → Y be an étale morphism in NFS. Given
J ⊂ OX, and K ⊂ OY Ideals of definition such that f∗(K)OX ⊂ J , if the
induced morphism f0 : X0 → Y0 is étale, then f is adic étale.

Proof. By Proposition 7.7 there is an adic étale morphism f ′ : X′ → Y in
NFS such that X′ ×Y Y0 = X0. Therefore by Proposition 7.1 there exists a
morphism of formal schemes g : X→ X′ such that the diagram

X
f → Y

X′

f ′ →g

→

X0

∪

↑

f0→ Y0

∪

↑

X0

↑

f ′0 →
g0=1X0

→
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is commutative. Applying [AJP, Proposition 2.13] we have that g is étale
and from Corollary 7.2 we deduce that g is an isomorphism and therefore,
f is adic étale. �

Corollary 7.9. Let f : X→ Y be a morphism in NFS. The morphism f is
adic étale if, and only if, there exist J ⊂ OX and K ⊂ OY Ideals of definition
with f∗(K)OX ⊂ J such that the induced morphisms fn : Xn → Yn are étale,
for all n ∈ N.

Proof. If f is adic étale, given K ⊂ OY an Ideal of definition, take J =
f∗(K)OX the corresponding Ideal of definition of X. By base change, we have
that the morphisms fn : Xn → Yn are étale, for all n ∈ N. The reciprocal is
a consequence of Proposition 6.1 and of the previous Corollary. �

Proposition 7.7 says that given

Y = lim−→
n∈N

Yn

in NFS and X0 an étale Y0-scheme there exists a unique (up to isomorphism)
étale Y-formal scheme X such that X×Y Y0 = X0. But, what happens when
X0 is a smooth Y0-scheme?

Proposition 7.10. Let Y be in NFS and with respect to an Ideal of defini-
tion K ⊂ OY let us write

Y = lim−→
n∈N

Yn.

Given f0 : X0 → Y0 a morphism in Sch smooth at x ∈ X0, there exists an
open subset U0 ⊂ X0, with x ∈ U0 and a smooth adic Y-formal scheme U
such that U×Y Y0

∼= U0.

Proof. Since this is a local question in Y, we may assume that Y = Spf(B)
is in NFSaf , K = K4 with K ⊂ B an ideal of definition of the adic ring
B, B0 = B/K and f0 : X0 = Spec(A0) → Y0 = Spec(B0) is a morphism
in Schaf smooth at x ∈ X0. By Proposition 5.9 there exists an open subset
U0 ⊂ X0 with x ∈ U0 such that f0|U0 factors as

U0
f ′0−→ An

Y0
= Spec(B0[T])

p0−→ Y0

where f ′0 is an étale morphism and p0 is the canonical projection, being
T = T1, T2, . . . , Tr a set of indeterminates. The morphism p0 lifts to a
morphism of projection p : An

Y = Spf(B{T}) → Y such that the following
diagram is cartesian

An
Y

p→ Y

U0
f ′0→ An

Y0

∪

↑

p0→ Y0

∪

↑
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Applying Proposition 7.7, there exists a locally noetherian étale adic An
Y-

formal scheme U such that U0
∼= U ×An

Y
An

Y0
. Then U is an smooth adic

Y-formal scheme such that U0
∼= U×Y Y0. �

The next theorem transfers the local description of unramified morphisms
known in the case of schemes ([EGA IV4, (18.4.7)]) to the framework of
formal schemes.

Theorem 7.11. Let f : X→ Y be a morphism in NFS unramified at x ∈ X.
Then there exists an open subset U ⊂ X with x ∈ U such that f |U factors as

U
κ−→ X′ f ′−→ Y

where κ is a pseudo closed immersion and f ′ is an adic étale morphism.

Proof. Let J ⊂ OX andK ⊂ OY be Ideals of definition such that f∗(K)OX ⊂
J . The morphism of schemes f0 associated to these Ideals is unramified at
x (Proposition 4.1) and by [EGA IV4, (18.4.7)] there exists an open set
U0 ⊂ X0 with x ∈ U0 such that f0|U0 factors as

U0
⊂κ0→ X ′

0

f ′0→ Y0

where κ0 is a closed immersion and f ′0 is an étale morphism. Proposition
7.7 implies that there exists an étale adic morphism f ′ : X′ → Y in NFS
such that X′ ×Y Y0 = X ′

0. Then if U ⊂ X is the open formal scheme with
underlying topological space U0, by Proposition 7.1 there exists a morphism
κ : U→ X′ such that the following diagram is commutative:

U
f |U → Y

X′

f ′ →κ

→

U0

∪

↑

f0|U0 → Y0

∪

↑

X ′
0

↑

f ′0 →
κ0

⊂

→

Since f is unramified, by [AJP, Proposition 2.13] it holds that κ is unram-
ified. Furthermore, κ0 is a closed immersion, then Corollary 4.13 shows us
that κ is a pseudo closed immersion. �

As a consequence of the last result we obtain the following local descrip-
tion for étale morphisms.

Theorem 7.12. Let f : X→ Y be a morphism in NFS étale at x ∈ X. Then
there exists an open subset U ⊂ X with x ∈ U such that f |U factors as

U
κ−→ X′ f ′−→ Y

where κ is a completion morphism and f ′ is an adic étale morphism.
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Proof. By the last theorem we have that there exists an open formal sub-
scheme U ⊂ X with x ∈ U such that f |U factors as

U
κ−→ X′ f ′−→ Y

where κ is a pseudo closed immersion and f ′ is an adic étale morphism. Then
since f |U is étale and f ′ is an adic étale morphism, by [AJP, Proposition
2.13] we have that κ is étale and applying Theorem 7.5 there results that κ
is a completion morphism. �

Theorem 7.13. Let f : X → Y be a morphism in NFS smooth at x ∈ X.
Then there exists an open subset U ⊂ X with x ∈ U such that f |U factors as

U
κ−→ X′ f ′−→ Y

where κ is a completion morphism and f ′ is an adic smooth morphism.

Proof. By Proposition 5.9 there exists an open formal subscheme V ⊂ X
with x ∈ V such that f |V factors as

V
g−→ An

Y
p−→ Y

where g is étale and p is the canonical projection. Applying the last Theorem
to the morphism g we conclude that there exists an open subset U ⊂ X with
x ∈ U such that f |U factors as

U
κ−→ X′ f ′′−→ An

Y
p−→ Y

where κ is a completion morphism, f ′′ is an adic étale morphism and p
is the canonical projection, from where it follows that f ′ = f ′′ ◦ p is adic
smooth. �

Remark. Lipman, Nayak and Sastry note in [LNS, pag. 132] that this Theo-
rem may simplify some developemts related to Cousin complexes and duality
on formal schemes. See the final part of Remark 10.3.10 of loc. cit.
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[AJL2] Alonso Tarŕıo, L.; Jeremı́as López, A.; Lipman, J.: Correction to the paper:
”Duality and flat base change on formal schemes” Proc. Amer. Math. Soc.
131 (2003), no. 2, 351–357.



42 L. ALONSO, A. JEREMÍAS, AND M. PÉREZ
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