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Abstract. This a first step to develop a theory of smooth, étale and
unramified morphisms between noetherian formal schemes. Our main
tool is the complete module of differentials, that is a coherent sheaf
whenever the map of formal schemes is of pseudo finite type. Among
our results we show that these infinitesimal properties of a map of usual
schemes carry over into the completion with respect to suitable closed
subsets. We characterize unramifiedness by the vanishing of the module
of differentials. Also we see that a smooth morphism of noetherian
formal schemes is flat and its module of differentials is locally free. The
paper closes with a version of Zariski’s Jacobian criterion.

Introduction

One of the great achievements of Grothendieck’s point of view in alge-
braic geometry was the relationship between the classical notion of simple
point and the notion of infinitesimal lifting. He proved that a point that is
“geometrically simple”, i.e. such that keeps being simple after an extension
of base field, can be characterized by the existence of a lifting from any sub-
scheme defined by a square zero ideal of an affine scheme to the full scheme.
In recent times formal schemes are getting increasing importance due to the
variety of applications in which they are involved, to name a few, as algebraic
models of rigid spaces [Raynaud 74], in the study of cohomology of singular
spaces [Hartshorne 75] or, more recently, in the context of stable homotopy
[Strickland 99]. One feels the need of a greater progress of the basic funda-
mentals of the theory of formal schemes, so far reduced more or less to the
last chapter of [EGA I] and parts of [EGA III1]. This paper intends to be
the first in a series in which infinitesimal conditions on locally noetherian
formal schemes are explored together with their applications to cohomology.
In a subsequent paper we will give the local structure of smooth and étale
maps of formal schemes. In this first installment, we develop a theory of
smooth morphisms for noetherian formal schemes. Chemin faisant, we also
treat the other properties related to infinitesimal lifting, namely étale and
unramified morphisms.
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These topics have already been treated in the literature, albeit very
scarcely. Smoothness is studied by Yekutieli under a special hypothesis,
specifically, condition (ii) in [Yekutieli 98, Definition 2.1] corresponds to a
smooth map in which the base is an ordinary noetherian scheme, so smooth
formal embeddings are examples of smooth maps of formal schemes. There
was also Nayak’s 1998 thesis whose results were eventually incorporated to
the treatise [Lipman, Nayak, Sastry 2005]. They work in the slightly more
general context of essentially pseudo finite type maps (cf. [loc.cit., §2.1]).
Our work has been developed mostly in parallel to this. As there is some
overlapping between this and [loc.cit.], we will point it out in the appro-
priate place when it arises. In fact, both groups of authors have reached
an agreement on terminology and their definition of module of differentials
[loc.cit., beggining of §2.6] agrees with ours when both are defined.

Let us discuss the contents of this paper. The paper begins with some
preliminaries to ease the task of the reader. They are collected into the first
paragraph. In the second, we establish the notions that we will study. Our
definition is taken from the one in [EGA IV4, §17.3] for topological algebras.
Therefore we will define formal smoothness for a map of formal schemes as
the existence of liftings from a map of ordinary schemes T ↪→ Z given by a
square zero Ideal. This agrees with the definition of formal smoothness for
topological algebras and looks very much like the only reasonable convention.
We therefore consider the maps like T ↪→ Z as test morphisms for the
condition of being formal smooth, unramified or étale. We obtain that maps
of formal schemes T ↪→ Z given by a square zero Ideal also detect formal
smoothness (Proposition 2.3). Next we add the condition of being of pseudo
finite type to define the notions of smoooth, unramified and étale morphism.
Our task is to show that these notions behave in a pleasant way, as in the
case of usual schemes. The section closes with the general properties of these
notions.

The next section is devoted to the study of the right notion of cotan-
gent bundle for formal schemes. This is the sheaf of differentials that is
obtained completing the usual module of differentials. It is our basic tool
for studying more advanced properties of smoothness. The definition guar-
antees that the sheaf of differentials is coherent for a pseudo finite type map
of formal schemes. Its basic characterizing property is that together with
the canonical derivation it represents the functor that associates to a sheaf
of complete OX-modules, the module of continuous derivations. After ex-
plaining the functoriality of our construction, we show the analogous of the
two fundamental exact sequences in this context.

Once one is equipped with the tool of the module of differentials, one is
able to show further properties like the fact that smoothness, unramifiedness
and being étale are properties local on the base and also on the source
(Proposition 4.1). We show that this properties pass from a map of usual
schemes to a completion. We characterize unramifiedness by the vanishing
of the module of differentials (Proposition 4.6). Also we see that a smooth
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morphism is flat and its module of differentials is locally free. Next we
discuss the splitting of the fundamental exact sequence when one of the
maps is smooth and the chapter closes with Zariski’s Jacobian criterion in
this context (Corollary 4.15).

Acknowledgments. We have benefited form conversations on these topics
and on terminology with Joe Lipman, Suresh Nayak and Pramath Sastry.
We also thank José Antonio Álvarez for his useful remarks and the Mathe-
matics Department of Purdue University for hospitality and support.

The diagrams were typeset with Paul Taylor’s diagrams.tex.

1. Preliminaries

We denote by NFS the category of locally noetherian formal schemes, by
NFSaf the subcategory of affine noetherian formal schemes and by Sch the
category of schemes.

We will begin by recalling briefly some basic definitions and results about
locally noetherian formal schemes. Of course, for a complete treatment we
refer the reader to [EGA I, §10]. We will give some detailed examples of
formal schemes, which we will refer along this exposition, like the affine
formal scheme and the formal disc. Next we deal with finiteness condi-
tions for morphisms in NFS, which generalize the analogous properties in
Sch. In the class of adic morphisms we recall the notions of finite type
morphisms, already defined in [EGA I, §10.13]. In the wider class of non
adic morphisms we will study morphisms of pseudo finite type (introduced in
[Alonso, Jeremı́as, Lipman 1999, p. 7]1). Last we will recall from [EGA IV4,
Chapter 0] some basic properties of the completed module of differentials

Ω̂1
A/B associated to a continuous morphism A→ B of adic rings.

1.1. [EGA I, (10.2.2) and (10.4.6)] The functors

A Spf(A) and X Γ(X,OX)

define a duality between the category of adic noetherian rings and NFSaf

that generalizes the well-known relation between the categories of rings and
affine schemes.

1.2. Every locally noetherian formal scheme is a direct limit of usual schemes
and every morphism in NFS is a direct limit of morphisms of schemes. More
precisely:

(1) [EGA I, (10.6.3), (10.6.4)] Given X in NFS and J ⊂ OX an Ideal of
definition, for all n ∈ N, Xn will denote the scheme (X,OX/J

n+1).
Then X is the direct limit in NFS of the diagram of noetherian
schemes {Xn, imn : Xm ↪→ Xn,m ≤ n}n∈N. We will recall this data

1Morphisms of pseudo finite type have been also introduced independently by Yekutieli
in [Yekutieli 98] under the name “formally finite type morphisms”
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saying that X it is expressed as

X = lim
−→
n∈N

Xn

with respect to the Ideal of definition J and leave implicit that the
schemes {Xn}n∈N are defined by the powers of J .

(2) [EGA I, (10.6.7), (10.6.8) and (10.6.9)] If f : X→ Y is a morphism
in NFS, given J ⊂ OX and K ⊂ OY Ideals of definition such that
f∗(K)OX ⊂ J , for each n ∈ N, fn : Xn := (X,OX/J

n+1) → Yn :=
(Y,OY/K

n+1) will be the morphism of schemes induced by f . The
morphism f is the direct limit of the system {fn}n∈N associated to
the Ideals of definition J ⊂ OX and K ⊂ OY and we will write

f = lim−→
n∈N

fn

Henceforth we will use systematically the above notations.

1.3. [EGA I, §10.12.] A morphism f : X → Y in NFS is adic (or simply X

is a Y-adic formal scheme) if there exists an Ideal of definition K of Y such
that f∗(K)OX is an Ideal of definition of X. Note that if there exists an
Ideal of definition K of Y such that f∗(K)OX is an Ideal of definition of X,
then all Ideals of definition of Y share this property.

If f is adic and K ⊂ OY is an Ideal of definition, then the diagrams of
schemes associated to the Ideals K and f∗(K)OX

Xm
fm
→ Ym

Xn

∪

↑

fn
→ Yn

∪

↑

(m ≥ n ≥ 0)

are cartesian.
Composition of adic morphisms is an adic morphism and the adic property

is stable under base-change in NFS.

1.4. [EGA I, §10.14.] Let X be in NFS. Given I ⊂ OX, a coherent Ideal,
X′ := Supp(OX/I) is a closed subset and (X′, (OX/I)|X′) is a locally noe-
therian formal scheme . We will say that X′ is the closed (formal) subscheme
of X defined by I.

[EGA I, (10.4.4)] Given U ⊂ X open, it holds that (U,OX|U) is a noether-
ian formal scheme and we say that U is an open subscheme of X.

A morphism f : Z → X is a closed immersion (open immersion) if there
exists Y ⊂ X closed (open, respectively) such that f factors as

Z
g
−→ Y ↪→ X

where g is an isomorphism.
Closed and open inmersions are adic morphisms.
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Definition 1.5. A morphism f : X → Y in NFS is of pseudo finite type if
there exist J ⊂ OX and K ⊂ OY Ideals of definition with f∗(K)OX ⊂ J
and such that the induced morphism of schemes, f0 : X0 → Y0 is of finite
type. If f is of pseudo finite type and adic we say that f is of finite type in
agreement with [EGA I, (10.13.1)].

We have the following examples of morphisms in NFSaf provided by 1.1:

Example 1.6. Let A be a J-adic noetherian ring and T = T1, T2, . . . , Tr a
finite number of indeterminates.

(1) The ring of restricted formal series A{T} is a J · A{T}-adic noe-
therian ring (cf. [EGA I, (0, 7.5.2)]). We call Spf(A{T}) the affine
formal r-space over A or the affine formal space of dimension r
over A and we will denote it by A

r
Spf(A). It is a model of the

closed disk in rigid geometry, cfr. [Henrio 2000, §2.2]. Note that
Spf(A{T}) = Spf(A) × Spec(Z[T]) is the base change on formal
schemes of the affine space Spec(Z[T]) over Spec(Z), that is why we
adopt this terminology. The canonical projection

A
r
Spf(A) → Spf(A)

is of finite type.
(2) The formal power series ring A[[T]] is a (J ·A[[T]]+〈T〉·A[[T]])-adic

noetherian ring (cf. [Matsumura 86, Theorem 3.3 and Exercise 8.6]).
We define the formal r-disc over A or formal disc of dimension r
over A as D

r
Spf(A) = Spf(A[[T]]). It is a model of the open disk in

rigid geometry, cfr. [Henrio 2000, §2.3]. It has no counterpart on
usual schemes, so a name relating it to rigid geometry is convenient.
The natural projection

D
r
Spf(A) → Spf(A)

is of pseudo finite type.
(3) Given an ideal I ⊂ A, the closed immersion

Spf(A/I) ↪→ Spf(A)

is a finite type morphism.
(4) Let a ∈ A and denote by A{a} the completion of Aa with respect

to the ideal J · Aa. The morphism A → A{a} induces the canonical
inclusion in NFSaf

D(a) ↪→ Spf(A).

It is a finite type morphism.

(5) Given X ′ = Spec(A/I) a closed subscheme of X = Spec(A), let Â
be the completion of A with respect to the I-adic topology. The

morphism of completion of X along X ′, κ : X/X′ = Spf(Â) → X is

of pseudo finite type and is of finite type only if X and X ′ have the
same underlying topological space hence, X/X′ = X and κ = 1X .
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Proposition 1.7. Let f : X→ Y be in NFS. The morphism f is of pseudo
finite type if, and only if, for each x ∈ X, there exist affine open subsets
V ⊂ Y and U ⊂ X with x ∈ U and f(U) ⊂ V such that f |U factors as

U
j
→ D

s
Ar

V

p
−→ V

where r, s ∈ N, j is a closed immersion and p is the canonical projection.
If f is of finite type, then the above factorization may be written, taking

s = 0, U
j
→ A

r
V

p
−→ V.

Proof. Since this is a local property we may assume X = Spf(A) and Y =
Spf(B). Given J ⊂ A and K ⊂ B ideals of definition such that KA ⊂ J let
f0 : X0 = Spec(A/J) → Y0 = Spec(B/K) be the morphism induced by f .
As f is pseudo finite type, there exists a presentation

B

K
↪→

B

K
[T1, T2, . . . , Tr]

ϕ0

�
A

J
.

This morphism lifts to a ring homomorphism

B ↪→ B[T1, T2, . . . , Tr]→ A

that extends to a continuous morphism

B ↪→ B{T}[[Z]] := B{T1, T2, . . . , Tr}[[Z1, Z2, . . . , Zs]]
ϕ
−→ A (1.7.1)

such that the images of Zi in A together with KA generate J . Let B′ :=
B{T}[[Z]]. It is easily seen that the morphism of graded modules associated
to ϕ

⊕

n∈N

(KB′ + 〈Z〉)n

(KB′ + 〈Z〉)n+1

gr(ϕ)
−−−→

⊕

n∈N

Jn

Jn+1

is surjective, therefore, ϕ is also surjective ([Bourbaki 1989, III, §2.8, Corol-
lary 2]).

If f is of finite type, we may take K ⊂ B and J ⊂ A ideals of definition
such that KA = J , so we can choose s = 0. Then, the factorization (1.7.1)
may be written

B → B{T1, T2, . . . , Tr}� A

and corresponds with the one given in [EGA I, (10.13.1)]. �

The next result is a general version of [EGA I, (10.3.5)] and follows from
the corresponding property in Sch, [EGA I, (6.3.4)].

Proposition 1.8. We have the following:

(1) Given f : X → Y and g : Y → S in NFS, if f and g are (pseudo)
finite type morphisms, then g ◦f is a (pseudo) finite type morphism.

(2) If f : X → Y is a (pseudo) finite type morphism, given h : Y′ →
Y a morphism in NFS we have that X ×Y Y′ is in NFS and that
f ′ : XY′ → Y′ is of (pseudo) finite type.
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(3) Take X
f
→ Y → S and Y

g
→ S → S in NFS, such that Y ×S Y′

is in NFS. If f and g are (pseudo) finite type morphisms, then
f ×S g : X×S X′ → Y×S Y′ is of (pseudo) finite type.

Proof. By (1.3) it suffices to prove the assertions for pseudo finite type mor-
phisms. First, (1) and (2) are deduced from the corresponding sorites in
Sch. Statement (2) follows from the formal argument in [EGA I, (0, 1.3.0)].
From this it follows that X×SX′ belongs to NFS as a consequence of (1) and
(2). Now the result is a consequence of the analogous property in Sch. �

The usual module of differentials of a homomorphism φ : A → B of
topological algebras is not necessarily complete, but its completion has the
good properties of the module of differentials in the discrete case.

1.9. (cf. [EGA IV1, §0, 20.4, p. 219]) Given B → A a continuous homo-
morphism of preadic rings2 and K ⊂ B, J ⊂ A ideals of definition such that

KA ⊂ J , we denote by Ω̂1
A/B, the completion of the A-module Ω1

A/B with

respect to the J-adic topology

Ω̂1
A/B = lim

←−
n∈N

Ω1
A/B

Jn+1Ω1
A/B

.

The continuous B-derivation dA/B : A → Ω1
A/B extends naturally, by

Leibnitz’ rule, to a continuous B̂-derivation which, with an abuse of termi-

nology, we will call canonical complete derivation of Â over B̂, and denote
by

d̂A/B : Â→ Ω̂1
A/B.

The canonical complete derivation of Â over B̂ makes the diagram

A
dA/B
→ Ω1

A/B

Â

can↓
bdA/B
→ Ω̂1

A/B

can↓

commutative.
For each n ∈ N let An = A/Jn+1 and Bn/K

n+1. There is a canonical
identification

Ω̂1
A/B
∼= lim
←−
n∈N

Ω1
An/Bn

with which

d̂A/B ∼= lim
←−
n∈N

dAn/Bn
.

2According to [EGA I, (0, 7.1.9)] a ring A is preadic if there exists an ideal of definition
J of A such that the the collection {Jn}n∈N forms a fundamental system of neighborhoods
of 0 in A. If A is moreover separated and complete then A is adic.
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Remark. Given B → A a morphism of preadic rings, let K ⊂ B, J ⊂ A
ideals of definition such that KA ⊂ J . As a consequence of the previous
discussion there results that

(Ω̂1
A/B , d̂A/B) ∼= (Ω̂1

bA/ bB
, d̂ bA/ bB

) (1.9.1)

where Â and B̂ denote the completions of A and B, with respect to the

J and K-preadic topologies, respectively, and Ω̂1
A/B and Ω̂1

bA/ bB
denote the

completions of Ω1
A/B and Ω1

bA/ bB
, with respect to the J-preadic and JÂ-adic

topologies, respectively.

1.10. Let A -comp be the category of complete A-modules for the J-adic
topology. For all M ∈ A -comp the isomorphism

HomcontA(Ω1
A/B ,M) ∼= DercontB(A,M) (cf. [EGA IV1, (0, 20.4.8.2)])

induces the following canonical isomorphism of B-modules

HomcontA(Ω̂1
A/B,M) ∼= DercontB(Â,M)

u  u ◦ d̂A/B .
(1.10.1)

In other words, the pair (Ω̂1
A/B, d̂A/B) represents the functor

M ∈ A -comp DercontB(Â,M).

In particular, if M is an A/J-module we have the isomorphism

HomA(Ω̂1
A/B ,M) ∼= DerB(Â,M).

1.11. [EGA I, (10.10.1)] Let X = Spf(A) with A a J-adic noetherian ring,
X = Spec(A) and X ′ = Spec(A/J), so we have that X = X/X′ . Given M

an A-module, M4 denotes the topological OX-Module

M4 := (M̃)/X′ = lim
←−
n∈N

M̃

J̃n+1M̃
.

Moreover, a morphism u : M → N in A -mod corresponds to a morphism of

OX-Modules ũ : M̃ → Ñ that induces a morphism of OX-Modules

M4 u4
−−→ N4 = lim←−

n∈N

(
M̃

J̃n+1M̃

ũn−→
Ñ

J̃n+1Ñ
).

So there is an additive covariant functor from the category of A-modules to
the category of OX-Modules

A -mod
4
−→ Mod(X)

M  M4.
(1.11.1)

1.12. If M ∈ A -mod and M̂ denotes the complete module of M for the
J-adic topology, from the definition of the functor 4 it is easy to deduce
that:
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(1) (Cf. [EGA I, proof of (10.10.2.1)]) Γ(X,M4) = M̂ .
(2) For all a ∈ A, Γ(D(a),M4) = M{a}.

(3) [EGA I, (10.10.2)] The functor (−)4 defines an equivalence of cat-
egories between finite type A-modules and the category Coh(X) of
coherent OX-Modules.

(4) [EGA I, (10.10.2.1)] The functor (−)4 is exact on the category of
A-modules of finite type.

1.13. A consequence of the previous results is the following. Let us consider
a morphism f : Spf(A)→ Spf(B) in NFSaf . Let a ∈ A and b ∈ B such that
f(Spf(A){a}) ⊂ Spf(B){b}, then

(Ω̂1
A/B)4(Spf(A){a}) = (Ω1

A/B)
{a}

= Ω̂1
Aa/B

= Ω̂1
Aa/Bb

= Ω̂1
A{a}/B{b}

.

Therefore, the sheaf (Ω̂1
A/B)4 agrees with the presheaf defined on principal

open subsets by Spf(A){a}  Ω̂1
A{a}/B

.

2. Definitions of the infinitesimal lifting properties

In this section we extend Grothendieck’s classical definition of infinitesi-
mal lifting properties from the category of schemes (cf. [EGA IV4, (17.1.1)])
to the category of locally noetherian formal schemes and we present some
of their basic properties. We will refer to a morphism of formal schemes
f : X → Y simply as a Y-formal scheme if there is no risk of ambiguity. If
X = X is an ordinary scheme, we will say that X is a Y-scheme.

Definition 2.1. Let f : X → Y be a morphism in NFS. We say that f
is formally smooth (formally unramified or formally étale) if it satisfies the
following lifting condition:

For all affine Y-scheme Z and for each closed subscheme T ↪→ Z given
by a square zero Ideal I ⊂ OZ the induced map

HomY(Z,X) −→ HomY(T,X) (2.1.1)

is surjective (injective or bijective, respectively).
So, f is formally étale if, and only if, is formally smooth and formally

unramified.

2.2. Let f : Spf(A)→ Spf(B) be in NFSaf . Applying (1.1), we obtain that
f is formally smooth (formally unramified or formally étale) if, and only
if, the topological B-algebra A is formally smooth (formally unramified or
formally étale, respectively) (cf. [EGA IV1, (0, 19.3.1) and (0, 19.10.2)]).

The reference for basic properties of the infinitesimal lifting conditions on
preadic rings is [EGA IV1, 0, §§ 19.3 and 19.10].

Next proposition shows that the lifting condition (2.1.1) extends to a
wider class of test maps.
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Proposition 2.3. Let f : X → Y be in NFS. If f is formally smooth
(formally unramified or formally étale), then for all affine noetherian Y-
formal scheme Z and for all closed formal subschemes T ↪→ Z given by a
square zero Ideal I ⊂ OZ, the induced map

HomY(Z,X) −→ HomY(T,X) (2.3.1)

is surjective (injective or bijective, respectively).

Proof. Let T = Spf(C/I)
j
↪→ Z = Spf(C) be a closed formal subscheme

given by a square zero ideal I ⊂ C . Let L ⊂ C be an ideal of definition,
writing Tn = Spec(C/(I + Ln+1)) and Zn = Spec(C/Ln+1), the embedding
j : T ↪→ Z is expressed as (see 1.2.(2))

lim
−→
n∈N

(Tn
jn
↪→ Zn),

where the morphisms jn are closed immersions of affine schemes defined by
a square zero Ideal. Given u : T→ X a Y-morphism, we will denote by u′n
the morphisms Tn ↪→ T

u
−→ X that make the diagrams

Tn ⊂
jn
→ Zn

X

u′n
↓

f
→ Y

↓

commutative for all n ∈ N.
Suppose that f is formally smooth. Translating the argument given in

[EGA IV1, (0, 19.3.10)] for topological algebras to the context of formal
schemes we get a Y-morphism

v := lim
−→
n∈N

(v′n : Zn → X)

that satisfies v|T = u. The morphisms {v′n}n∈N are constructed by induc-
tion and satisfy that v′n|Tn = u′n and v′n|Zn−1

= v′n−1, for each n > 0 (cf.
[EGA IV1, (0, 19.3.10.1) and (0, 19.3.10.2)]).

If f is formally unramified, assume there exist Y-morphisms v : Z → X

and w : Z→ X such that v|T = w|T = u. With the notations established at
the beginning of the proof consider

v = lim−→
n∈N

(v′n : Zn → X) and w = lim−→
n∈N

(w′
n : Zn → X)

such that the diagram

Tn ⊂
jn
→ Zn

X

v′n
↓
w′

n
↓

f
→

u ′
n →

Y

→
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commutes. By hypothesis we have that v′n = w′
n, for all n ∈ N, and we

conclude that

v = lim
−→
n∈N

v′n = lim
−→
n∈N

w′
n = w. �

2.4. In Definition 2.1 the test morphisms for the lifting condition are closed
subschemes of affine Y-schemes given by square-zero ideals. An easy patch-
ing argument gives that the uniqueness of lifting conditions holds for closed
subschemes of arbitrary Y-schemes given by square-zero ideals ([EGA IV4,
(17.1.2.(iv))]). This applies to formally unramified and formally étale mor-
phisms.

Corollary 2.5. Let f : X → Y be in NFS. If the morphism f is formally
unramified (or formally étale), then for all noetherian Y-formal schemes Z

and for each closed formal subscheme T ↪→ Z given by a square zero Ideal
I ⊂ OZ, the induced map

HomY(Z,X) −→ HomY(T,X) (2.5.1)

is injective (or bijective, respectively).

Proof. Given {Vα} a covering of affine open formal subschemes of Z, denote
by {Uα} the covering of affine open formal subschemes of T given by Uα =
Vα ∩ T, for all α. By [EGA I, (10.14.4)] Uα ↪→ Vα is a closed immersion
in NFS determined by a square zero Ideal. Therefore, the proof follows the
same line as [EGA IV4, (17.1.2.(iv))]. �

The study of infinitesimal properties in Sch using the module of dif-
ferentials leads one to look at the class of finite type morphisms. Un-
der this assumption there are nice characterizations of the infinitesimal
lifting conditions in terms of the module of differentials. We will con-
sider two conditions for morphisms in NFS that generalize the property
of being of finite type for morphisms in Sch: morphisms of pseudo finite
type ([Alonso, Jeremı́as, Lipman 1999, 1.2.2]) and its adic counterpart, mor-
phisms of finite type ([EGA I, (10.13.3)]).

Definition 2.6. Let f : X → Y be in NFS. The morphism f is smooth
(unramified or étale) if, and only if, it is of pseudo finite type and formally
smooth (formally unramified or formally étale, respectively). If moreover f
is adic, we say that f is adic smooth (adic unramified or adic étale, respec-
tively). So f is adic smooth (adic unramified or adic étale) if it is of finite
type and formally smooth (formally unramified or formally étale, respec-
tively).

If f : X → Y is in Sch, both definitions agree with the one given in
[EGA IV4, (17.3.1)] and we say that f is smooth (unramified or étale, re-
spectively).

Using 2.2 we will be able to describe a few basic examples of morphisms
in NFSaf that satisfy some of the infinitesimal lifting conditions (Example
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2.8). Before all else, let us recall some of the properties of the infinitesimal
lifting conditions for preadic rings.

Remark. Let B → A be a continuous morphism of preadic rings and take J ⊂
A, K ⊂ B ideals of definition with KA ⊂ J . Given J ′ ⊂ A, K ′ ⊂ B ideals
such that K ′A ⊂ J ′, J ⊂ J ′ and K ⊂ K ′, if A is a formally smooth (formally
unramified or formally étale) B-algebra for the J andK-adic topologies then,
we have that A is a formally smooth (formally unramified or formally étale,
respectively) B-algebra for the J ′ and K ′-adic topologies, respectively.

Lemma 2.7. Let B → A be a continuous morphism of preadic rings, J ⊂ A

and K ⊂ B ideals of definition with KA ⊂ J and let us denote by Â and

B̂ the respective completions of A and B. The following conditions are
equivalent:

(1) A is a formally smooth (formally unramified or formally étale) B-
algebra

(2) Â is a formally smooth (formally unramified or formally étale, re-
spectively) B-algebra

(3) Â is a formally smooth (formally unramified or formally étale, re-

spectively) B̂-algebra

Proof. It suffices to note that

HomcontB -Alg(A,C) ∼= HomcontB -Alg(Â, C) ∼= Homcont bB -Alg
(Â, C)

for all discrete rings C and all continuous homomorphisms B → C. �

Example 2.8. Put X = Spf(A) with A a J-adic noetherian ring and let
T = T1, T2, . . . , Tr be a finite number of indeterminates.

(1) If we take in A the discrete topology, from the universal property
of the polynomial ring it follows that A[T] is a formally smooth
A-algebra. Applying the previous remark and Lemma 2.7 we have
that the restricted formal series ring A{T} is a formally smooth A-
algebra, therefore the canonical morphism A

r
X→ X is adic smooth.

(2) Analogously to the preceding example, we obtain that A[[T]] is a
formally smooth A-algebra, from which we deduce that projection
D
r
X→ X is smooth.

(3) If we take in A the discrete topology it is known that, given a ∈ A,
Aa is a formally étale A-algebra. So, there results that the canonical
inclusion D(a) ↪→ X is adic étale.

(4) Trivially, every surjective morphism of rings is formally unramified.
Therefore, given an ideal I ⊂ A, the closed immersion Spf(A/I) ↪→ X

is adic unramified.
(5) If X ′ = Spec(A/I) is a closed subscheme of X, κ : X/X′ → X,

the morphism of completion of X along X ′, corresponds through

(1.1) with the continuous morphism of rings A→ Â, where Â is the
completion of A for the I-adic topology and therefore, κ is étale.
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Proposition 2.9. In the category NFS of locally noetherian formal schemes
the following properties hold:

(1) Composition of smooth (unramified or étale) morphisms is a smooth
(unramified or étale, respectively) morphism.

(2) Smooth, unramified and étale character is stable under base-change
in NFS.

(3) Product of smooth (unramified or étale) morphisms is a smooth (un-
ramified or étale, respectively) morphism.

Proof. Keeping in mind that composition of pseudo finite type maps is a
pseudo finite type map and pseudo finite type character of a map is pre-
served under base-change (Proposition 1.8) the proof is similar to [EGA IV4,
(17.1.3) (ii), (iii) and (iv)] �

Proposition 2.10. The assertions of the last proposition hold if we change
the infinitesimal conditions by the corresponding infinitesimal adic condi-
tions.

Proof. By the definition of the infinitesimal adic conditions, it suffices to
apply the last result and the sorites of finite type morphisms (Proposition
1.8). �

Example 2.11. Let X be in NFS and r ∈ N. From Proposition 2.9.(2),
Example 2.8.(1) and Example 2.8.(2) we get that:

(1) The morphism of projection A
r
X := X ×Spec(Z) A

r
Spec(Z) → X is an

adic smooth morphism.
(2) The canonical morphism D

r
X := X×Spec(Z) D

r
Spec(Z) → X is smooth.

Proposition 2.12. The following holds in the category of locally noetherian
formal schemes:

(1) A closed immersion is adic unramified.
(2) An open immersion is adic étale.

Proof. Closed and open immersions (see 1.4) are monomorphisms and there-
fore, unramified. On the other hand, open immersions are smooth mor-
phisms. �

Proposition 2.13. Let f : X→ Y, g : Y→ S be two morphisms of pseudo
finite type in NFS.

(1) If g ◦ f is unramified, then so is f .
(2) Let us suppose that g is unramified. If g ◦ f is smooth (or étale)

then, f is smooth (or étale, respectively).

Proof. Item (1) is immediate. The proof of (2) is analogous to [EGA IV4,
(17.1.4)]. �

Corollary 2.14. Let f : X → Y be a pseudo finite type morphism and
g : Y→ S an étale morphism. The morphism g ◦ f is smooth (or étale) if,
and only if, f is smooth (or étale, respectively).

Proof. It is enough to apply Proposition 2.9.(1) and Proposition 2.13. �



14 L. ALONSO, A. JEREMÍAS, AND M. PÉREZ

3. Differentials of a pseudo finite type map of formal schemes

Given f : X → Y a finite type morphism of schemes, it is well-known that
Ω1
X/Y , the module of 1-differentials of X over Y , is an essential tool to study

the smooth, unramified or étale character of f . In this section, we introduce
the module of 1-differentials for a morphism f : X→ Y in NFS and discuss
its fundamental properties, which will be used in the characterizations of the
infinitesimal conditions in Section 4. We cannot use the general definition
for ringed spaces, because it does not take into account the topology in the
structure sheaves.

The observation in 1.13 shows that the following definition makes sense.

Definition 3.1. Given f : X → Y in NFS we call module of 1-differen-
tials of f or module of 1-differentials of X over Y and we will denote it by

Ω̂1
f or Ω̂1

X/Y, the sheaf of topological OX-Modules locally given by (Ω̂1
A/B)4

(see 1.13), for all open sets U = Spf(A) ⊂ X and V = Spf(B) ⊂ Y with

f(U) ⊂ V. Note that Ω̂1
X/Y has structure of OX-Module.

Let f : X→ Y be in NFS and J ⊂ OX and K ⊂ OY be Ideals of definition
such that f∗(K)OX ⊂ J . These Ideals provide us with an inverse system of
derivations

dXn/Yn
:
OX

In+1
→ Ω1

Xn/Yn
, n ∈ N.

Let d̂X/Y : OX→ Ω̂1
X/Y be the morphism

lim
←−
n∈N

dXn/Yn
= lim
←−
n∈N

(
OX

In+1

dXn/Yn
−−−−−→ Ω1

Xn/Yn
).

It is locally defined for all couple of affine open sets U = Spf(A) ⊂ X and

V = Spf(B) ⊂ Y such that f(U) ⊂ V by d̂X/Y(Spf(A)) = d̂A/B : A→ Ω̂1
A/B.

This construction is independent of the Ideals of definition chosen for X and
Y, see 1.9.

The morphism d̂X/Y is a continuous Y-derivation and it is called the

canonical derivation of X over Y. We will refer to (Ω̂1
X/Y, d̂X/Y) as the

differential pair of X over Y.

3.2. If X = Spec(A) → Y = Spec(B) is a morphism of usual schemes,

there results that (Ω̂1
X/Y , d̂X/Y ) = (Ω1

X/Y , dX/Y ) is the differential pair of

the morphism of affine schemes (cf. [EGA IV4, (16.5.3)]).

Remark. Our definition of the differential pair, (Ω̂1
X/Y, d̂X/Y), of a morphism

X → Y in NFS, agrees with the one given in [Lipman, Nayak, Sastry 2005,
2.6] where it is directly defined as

lim
←−
n∈N

(
OX

In+1

dXn/Yn
−−−−−→ Ω1

Xn/Yn
).
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Proposition 3.3. ( cf. [Lipman, Nayak, Sastry 2005, Proposition 2.6.1])

Let f : X → Y be a morphism in NFS of pseudo finite type. Then Ω̂1
X/Y is

a coherent sheaf.

Proof. We may suppose that f : X = Spf(A)→ Y = Spf(B) is in NFSaf . Let
J ⊂ A and K ⊂ B be ideals of definition such that KA ⊂ J . By hypothesis
we have that B0 = B/K → A0 = A/J is a finite type morphism and
therefore, Ω1

A0/B0
is a finite type A0-module. From [EGA IV1, (0, 20.7.15)])

it follows that Ω̂1
A/B is a finite type A-module. Therefore, since Ω̂1

X/Y =

(Ω̂1
A/B)4 the result is deduced from 1.12.3. �

Given X → Y a morphism of schemes in [EGA IV4, (16.5.3)] it is estab-
lished that (Ω1

X/Y , dX/Y ) is the universal pair of the representable functor

F ∈ Mod(X) DerY (OX ,F). In Theorem 3.5 this result is generalized for
a morphism X→ Y in NFS.

3.4. Given X in NFS and J ⊂ OX an Ideal of definition of X we will denote
by Comp(X) the full subcategory of OX-Modules F such that

F = lim
←−
n∈N

(F ⊗OX
OXn).

It is easily seen that the definition does not depend on the election of the
Ideal of definition of X.

For example:

(1) Given X = Spf(A) in NFSaf and J ⊂ A an ideal of definition for all
A-modules M , it holds that

M4 = lim
←−
n∈N

M̃

J̃n+1M̃
∈ Comp(X).

(2) Let X be in NFS. For all F ∈ Coh(X), we have that

F = lim←−
n∈N

(F ⊗OX
OXn)

by [EGA I, (10.11.3)] and therefore, Coh(X) is a full subcategory
of Comp(X). Consequently, if f : X → Y is a pseudo finite type

morphism in NFS, then Ω̂1
X/Y ∈ Comp(X) by (3.3).

Now we are ready to show that given X → Y a morphism in NFS,

(Ω̂1
X/Y, d̂X/Y) is the universal pair for the representable functor

F ∈ Comp(X) DercontY(OX,F).

Theorem 3.5. Let f : X→ Y be a morphism in NFS. Then the canonical
map

HomcontOX
(Ω̂1

X/Y,F)
ϕ
−→ DercontY(OX,F)

u  u ◦ d̂X/Y

is an isomorphism for every F ∈ Comp(X).
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Proof. It is a globalization of [EGA IV1, (0, 20.7.14.4)]. We leave the details
to the reader. �

Lemma 3.6. Let f : X→ Y be a morphism in NFS. If F ∈ Comp(X) then

f∗F = lim←−
n∈N

(f∗F ⊗OY
OYn)

and consequently, f∗F is in Comp(Y).

Proof. Let J ⊂ OX and K ⊂ OY be Ideals of definition such that f∗(K)OX ⊂
J . For all n ∈ N we have the canonical morphisms f∗F → f∗F ⊗OY

OYn

that induce the morphism of OY-Modules

f∗F −→ lim←−
n∈N

(f∗F ⊗OY
OYn)

To see whether it is an isomorphism is a local question, therefore we may
assume that f = Spf(φ) : X = Spf(A) → Y = Spf(B) is in NFSaf , J = J4

and K = K4 with J ⊂ A and K ⊂ B ideals of definition such that KA ⊂ J .
Then M = Γ(Y, f∗F) is a complete B-module for the φ−1(J)-adic topology
and since K ⊂ φ−1(J) we have that

M = lim
←−
n∈N

M

Kn+1M

and the result follows. �

Proposition 3.7. Given a commutative diagram in NFS of pseudo finite
type morphisms

X → Y

X′

g

↑

h
→ Y′

↑

there exists a morphism of OX′-Modules g∗Ω̂1
X/Y −→ Ω̂1

X′/Y′ locally deter-

mined by d̂X/Y(a) ⊗ 1  d̂X′/Y′g(a). Moreover, if the diagram is cartesian,
the above morphism is an isomorphism.

Proof. The morphism

OX→ g∗OX′

g∗ bdX′/Y′

−−−−−→ g∗Ω̂
1
X′/Y′

is a continuous Y-derivation. Applying Proposition 3.3 and Lemma 3.6 we

have that g∗Ω̂
1
X′/Y′ ∈ Comp(X) and therefore by Theorem 3.5 there exists an

unique morphism of OX-Modules Ω̂1
X/Y→ g∗Ω̂

1
X′/Y′ such that the following
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diagram is commutative

OX

bdX/Y
→ Ω̂1

X/Y

g∗OX′

↓
g∗ bdX/Y
→ g∗Ω̂

1
X′/Y′

↓

Equivalently, there exists a morphism of OX′-Modules g∗Ω̂1
X/Y → Ω̂1

X′/Y′

locally determined by d̂X/Ya⊗ 1 d̂X′/Y′g(a).
Let us suppose that the square of formal schemes in the statement of this

proposition is cartesian. We may assume X = Spf(A), Y = Spf(B), Y′ =
Spf(B′) and X′ = Spf(A′) with A′ = A⊗̂BB

′. The induced topology in

Ω̂A/B ⊗AA
′ is the one given by the topology of A′. As a consequence of the

canonical isomorphism of A′-modules Ω1
A′/B′

∼= Ω1
A/B ⊗A A

′ (cf. [EGA IV1,

(0, 20.5.5)]) it holds that

Ω̂1
A′/B′

∼= Ω̂1
Ab⊗BB′/B′

∼=
(1.9)

Ω1
A/B⊗̂AA

′ ∼=
[EGA I, (0, 7.7.1)]

Ω̂1
A/B⊗̂AA

′.

Finally Ω̂1
A/B is an A-module of finite type (see Proposition 3.3) hence,

Ω̂1
A′/B′

∼= Ω̂1
A/B ⊗A A

′. �

With the previous notations, if Y = Y′ the morphism g∗Ω̂1
X/Y −→ Ω̂1

X′/Y

is denoted by dg and is called the differential of g over Y.

Corollary 3.8. Given f : X → Y a finite type morphism in NFS consider
K ⊂ OY and J = f∗(K)OX ⊂ OX Ideals of definition that let us express

f = lim−→
n∈N

(fn : Xn → Yn).

Then

Ω1
Xn/Yn

∼= Ω̂1
X/Y⊗OX

OXn .

for all n ∈ N.

Proof. Since f is an adic morphism, the diagrams

X
f
→ Y

Xn

↑

fn
→ Yn

↑

are cartesian, ∀n ≥ 0. Then the corollary follows. �

In the following example we show that if the morphism is not adic, the
last corollary does not hold.
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Example 3.9. Let K be a field and p : D
1
K → Spec(K) the projection

morphism of the formal disc of 1 dimension over Spec(K). Given the ideal
of definition 〈T 〉 ⊂ K[[T ]] such that

p = lim
−→
n∈N

pn

we have that Ω1
p0 = 0 but,

Ω̂1
p ⊗O

D1
K

OSpec(K) = (Ω̂1
K[[T ]]/K)4 ⊗K[[T ]]4 K̃

∼= K̃ 6= 0.

We extend the usual First and Second Fundamental Sequences to our
construction of differentials of pseudo finite type morphisms between formal
schemes. They will provide a basic tool for applying it to the study of the
infinitesimal lifting. Also, we will give a local computation based on the
Second Fundamental Exact Sequence.

Proposition 3.10. (First Fundamental Exact Sequence) Let f : X→ Y and
g : Y→ S be two morphisms in NFS of pseudo finite type. There exists an
exact sequence of coherent OX-Modules

f∗Ω̂1
Y/S

Φ
−→ Ω̂1

X/S
Ψ
−→ Ω̂1

X/Y→ 0 (3.10.1)

where Φ and Ψ are locally defined by

d̂Y/Sb⊗ 1 d̂X/Sf(b) d̂X/Sa d̂X/Ya

Proof. This is a globalization of [Lipman, Nayak, Sastry 2005, Lemma 2.5.2]

(see also [EGA IV1, (0, 20.7.17.3)]). The morphism Φ: f∗Ω̂1
Y/S→ Ω̂1

X/S of

OX-Modules is df , the differential of f over S. Since d̂X/Y : OX→ Ω̂1
X/Y is a

continuous S-derivation, from Theorem 3.5 there exists a unique morphism

of OX-Modules Ψ: Ω̂1
X/S→ Ω̂1

X/Y such that Ψ ◦ d̂X/S = d̂X/Y.

As for proving the exactness we can reduce to the affine case and then
it is the first part of [Lipman, Nayak, Sastry 2005, Lemma 2.5.5] (see also
[EGA IV1, (0, 20.7.17)]). �

3.11. Let f : X→ Y be a pseudo finite type morphism in NFS, and J ⊂ OX

and K ⊂ OY be Ideals of definition with f∗(K)OX ⊂ J and

f : X→ Y = lim
−→
n∈N

(fn : Xn → Yn)

the relevant expression for f . For all n ∈ N, from the First Fundamental

Exact Sequence (3.10.1) associated to Xn
fn
→ Yn ↪→ Y, we deduce that

Ω̂1
Xn/Y

= Ω1
Xn/Y

= Ω1
Xn/Yn

.

3.12. Given X′ i
↪→ X a closed immersion in NFS we have that the morphism

i] : i−1(OX)→ OX′ is an epimorphism. If K := ker(i]) we call CX′/X := K/K2

the conormal sheaf of X′ in X.
It is easily shown that CX′/X satisfies the following properties:
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(1) It is a coherent OX′-module.
(2) If X′ ⊂ X is a closed subscheme given by a coherent Ideal I ⊂ OX,

then CX′/X = i∗(I/I2).

Proposition 3.13. (Second Fundamental Exact Sequence) Let f : X → Y

be a pseudo finite type morphism in NFS, and X′ i
↪→ X a closed immersion.

There exists an exact sequence of coherent OX′-Modules

CX′/X
δ
−→ i∗Ω̂1

X/Y
Φ
−→ Ω̂1

X′/Y→ 0 (3.13.1)

Proof. Morphism Φ is the differential of i and is defined by d̂X/Ya ⊗ 1  

d̂X′/Yi(a) (Proposition 3.7). If I ⊂ OX is the Ideal that defines the closed

subscheme i(X′) ⊂ X the morphism δ is the one induced by d̂X/Y|I : I →

Ω̂1
X/Y. Again the exactness is consequence of [EGA IV1, (0, 20.7.20)]). �

As it happens in Sch the Second Fundamental Exact Sequence leads to
a local description of the module of differentials of a pseudo finite type
morphism between locally noetherian formal schemes.

3.14. Let f : X = Spf(A)→ Y = Spf(B) be a morphism in NFSaf of pseudo
finite type, then it factors as (see Proposition 1.7)

X = Spf(A)
j
↪→ D

s
Ar

Y
= Spf(B{T}[[Z]])

p
−→ Y = Spf(B)

where r, s ∈ N, T = T1, T2, . . . , Tr and Z = Z1, Z2, . . . , Zr two sets of
indeterminates, p is the canonical projection and j is a closed immersion
given by an Ideal I = I4 ⊂ ODs

Ar
Y

. Consider also a system of generators

I = 〈P1, . . . , Pk〉 ⊂ B{T}[[Z]].

The Second Fundamental Exact Sequence (3.13.1) associated to X
j
↪→

D
s
Ar

Y

p
−→ Y corresponds through the equivalence between the category of

finite type A-modules and Coh(X) 1.12.3, to the sequence

I

I2

δ
−→ Ω̂1

B{T}[[Z]]/B ⊗B{T}[[Z]] A
Φ
−→ Ω̂1

A/B → 0. (3.14.1)

Let us use the following abbreviation d̂ = d̂B{T}[[Z]]/B. Since

Ω̂1
B{T}[[Z]]/B

∼= Ω̂1
B[T,Z]/B

∼=

r⊕

i=1

B{T}[[Z]]d̂Ti ⊕

s⊕

j=1

B{T}[[Z]]d̂Zj

then {d̂T1, d̂T2, . . . , d̂Tr, d̂Z1, . . . , d̂Zs} is a basis of the free B{T}[[Z]]-

module Ω̂1
B{T}[[Z]]/B. Therefore, if a1, a2, . . . , ar, ar+1, . . . , ar+s are the

images of T1, T2, . . . , Tr, Z1, . . . , Zs in A, by the definition of Φ we have

Ω̂1
A/B = 〈d̂A/Ba1, d̂A/Ba2, . . . , d̂A/Bar, d̂A/Bar+1, . . . , d̂A/Bar+s〉
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and from the exactness of (3.14.1) it holds that

Ω̂1
A/B
∼=

Ω̂1
B{T}[[Z]]/B ⊗B{T}[[Z]] A

〈d̂P1 ⊗ 1, . . . , d̂Pk ⊗ 1〉

or, equivalently, since the functor (−)4 is exact on Coh(X),

Ω̂1
X/Y
∼=

Ω̂1
Ds

Ar
Y
/Y⊗ODs

Ar
Y

OX

〈d̂P1 ⊗ 1, . . . , d̂Pk ⊗ 1〉4
.

4. Differentials and infinitesimal lifting properties

Next we study some characterizations for a smooth, unramified and étale
morphism between locally noetherian formal schemes. Above all, we will

focus on the properties related to the module of differentials Ω̂1
X/Y. We

highlight the importance of the Jacobian Criterion for affine formal schemes
(Corollary 4.15) which allows us to determine when a closed formal sub-
scheme of a smooth formal scheme is smooth rendering Zariski’s Jacobian
Criterion for topological rings (cf. [EGA IV1, (0, 22.6.1)] into the present
context.

Proposition 4.1. Let f : X→ Y a morphism in NFS.

(1) Given {Uα}α∈L an open covering of X, f is smooth (unramified or
étale) if, and only if, for all α ∈ L, f |Uα : Uα → Y is smooth
(unramified or étale, respectively).

(2) If {Vλ}λ∈J is an open covering of Y, f is smooth (unramified or
étale) if, and only if, for all λ ∈ J , f |f−1(Vλ) : f−1(Vλ) → Vλ is
smooth (unramified or étale, respectively).

Proof. This may be proved similarly as the case of usual schemes [EGA IV4,
(17.1.6)] having in mind Propositions 2.9 and 2.13. �

Corollary 4.2. The results 2.13, 2.14 and 4.1 are true if we replace the
infinitesimal lifting properties by their adic counterparts.

Proof. It is straightforward from this results in view of [EGA I, (10.12.1)]
and Proposition 1.8. �

Remark. It follows from the two last results that in the local study of the
infinitesimal lifting properties (with or without the adic hypothesis) over
locally noetherian formal schemes, we can restrict to NFSaf .

4.3. We say that f : X→ Y in NFS is smooth (unramified or étale) at x ∈ X

if there exists an open subset U ⊂ X with x ∈ U such that f |U is smooth
(unramified or étale, respectively).

By Proposition 4.1 it holds that f is smooth (unramified or étale) if, and
only if, f is smooth (unramified or étale, respectively) at x ∈ X, ∀x ∈ X.
Observe that the set of points x ∈ X such that f is smooth (unramified, or
étale) in x is an open subset of X.
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In a forthcoming paper we will show how the infinitesimal lifting condi-
tions in NFS at a given point depend only on the local rings.

Corollary 4.4. Let X be in Sch and X ′ ⊂ X a closed subscheme. Then the
morphism of completion of X along X ′, κ : X/X′ → X is étale.

Proof. Applying Proposition 4.1 we may assume that X = Spec(A) and
X ′ = Spec(A/I) are in Schaf with A a noetherian ring and I ⊂ A an ideal.
Then, it follows from Example 2.8.(5). �

Proposition 4.5. Given f : X → Y in Sch, let X ′ ⊂ X and Y ′ ⊂ Y be
closed subschemes such that f(X ′) ⊂ Y ′.

(1) If f is smooth (unramified or étale) then f̂ : X/X′ → Y/Y ′ is smooth
(unramified or étale, respectively).

(2) If moreover X ′ = f−1(Y ′) then f̂ : X/X′ → Y/Y ′ is adic smooth
(adic unramified or adic étale, respectively).

Proof. Let us consider the commutative diagram of locally noetherian formal
schemes

X
f
→ Y

X/X′

κ

↑

bf
→ Y/Y ′

κ

↑

where the vertical arrows are morphisms of completion that, being slightly
imprecise, we denote both by κ. Let us prove (1). If f is smooth (unramified
or étale) by the last corollary and Proposition 2.9.(1) we have that f ◦κ = κ◦

f̂ is also smooth (unramified or étale). Since κ is étale from Proposition 2.13

we deduce that f̂ is smooth (unramified or étale, respectively). Assertion
(2) is consequence of (1) and [EGA I, (10.13.6)]. �

Proposition 4.6. Let f : X → Y be a morphism in NFS of pseudo finite

type. The morphism f is unramified if, and only if, Ω̂1
X/Y = 0.

Proof. By Proposition 4.1 and Definition 3.1 we may suppose that f : X→ Y

is in NFSaf and therefore the result follows from [EGA IV1, (0, 20.7.4)]. �

Corollary 4.7. Let f : X → Y and g : Y → S be two pseudo finite type
morphisms in NFS. Then f is unramified if, and only if, the morphism of

OX-Modules f∗(Ω̂1
Y/S)→ Ω̂1

X/S is surjective.

Proof. Use the last proposition and the First Fundamental Exact Sequence

(3.10.1) associated to the morphisms X
f
−→ Y

g
−→ S. �

Proposition 4.8. ( cf. [Lipman, Nayak, Sastry 2005, Proposition 2.6.1])

Let f : X→ Y be a smooth morphism. Then f is flat and Ω̂1
X/Y is a locally

free OX-module of finite rank.
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Proof. Since it is a local question, we may assume that f : X = Spf(A) →
Y = Spf(B) is in NFSaf where φ : B → A is a topological B-algebra that is
formally smooth (see (2.2)). As for proving the flatness it suffices to show
that for all maximal ideals p ⊂ A, Ap is a flat Bq-module with q = φ−1(p).
Fix p ⊂ A a prime ideal. By [EGA IV1, (0, 19.3.5.(iv))] it holds that Ap is a
formally smooth Bq-algebra for the adic topologies and applying [EGA IV1,
(0, 19.3.8)] there results that Ap is a formally smooth Bq-algebra for the
topologies given by the maximal ideals. Then, by [EGA IV1, (0, 19.7.1)] we
have that Ap is a flat Bq-module.

Let now J ⊂ A be an ideal of definition of A. The A/J-module Ω̂1
A/B ⊗A

A/J is projective. Indeed, given an exact sequence L
g
→ M → 0 of A/J-

modules, the sequence

HomA/J(Ω̂
1
A/B ⊗A A/J,L)→ HomA/J(Ω̂

1
A/B ⊗A A/J,M)→ 0

is exact by the identity of functors on A/J-modules

HomA/J(Ω̂
1
A/B ⊗A A/J,−) = HomA(Ω̂1

A/B ,−) = DerB(A,−)

and an argument analogous to the proof of [Matsumura 86, Theorem 28.5].

But Ω̂1
A/B is a finite type A-module (see Proposition 3.3) by [EGA I, (0,

7.2.10)], then it follows that Ω̂1
A/B is a projective A-module. The result is

now a consequence of [EGA I, (10.10.8.6)]. �

Proposition 4.9. Let f : X → Y be a smooth morphism in NFS. For
all pseudo finite type morphism Y → S in NFS the sequence of coherent
OX-modules

0→ f∗Ω̂1
Y/S

Φ
−→ Ω̂1

X/S
Ψ
−→ Ω̂1

X/Y→ 0

defined in Proposition 3.10 is exact and locally split.

Proof. It is a local question, and follows from [Lipman, Nayak, Sastry 2005,
Lemma 2.5.2] that is based on [EGA IV1, (0, 20.7.17.3) and (0, 20.7.18)]. �

Corollary 4.10. Let f : X → Y be an étale morphism in NFS. For all
pseudo finite type morphism Y→ S in NFS it holds that

f∗Ω̂1
Y/S
∼= Ω̂1

X/S

Proof. It is a consequence of the last result and of Proposition 4.6. �

4.11. Given A a J-preadic ring, let Â be the completion of A for the J-adic
topology and An = A/Jn+1, for all n ∈ N. Take M ′′, M ′ and M A-modules,

denote by M̂ ′′, M̂ ′, M̂ their completions for the J-adic topology and let

M̂ ′′ u
−→ M̂ ′ v

−→ M̂ be a sequence of Â-modules. It holds that

(1) If 0→ M̂ ′′ u
−→ M̂ ′ v

−→ M̂ → 0 is a split exact sequence of Â-modules
then, for all n ∈ N

0→M ′′ ⊗A An
un−→M ′ ⊗A An

vn−→M ⊗A An → 0

is a split exact sequence.
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(2) Reciprocally, if M ⊗A An is a projective An-module and

0→M ′′ ⊗A An
un−→M ′ ⊗A An

vn−→M ⊗A An → 0

is a split exact sequence of An-modules, for all n ∈ N, then

0→ M̂ ′′ → M̂ ′ → M̂ → 0 (4.11.1)

is a split exact sequence of Â-modules.

Assertion (1) is immediate. In order to prove (2), for all n ∈ N we have the
following commutative diagrams:

0 →M ′′ ⊗A An+1
un+1
→M ′ ⊗A An+1

vn+1
→M ⊗A An+1→ 0

0 →M ′′ ⊗A An

fn↓↓
un
→M ′ ⊗A An

gn↓↓
vn
→M ⊗A An

hn↓↓
→ 0

where the rows are split exact sequences and the vertical maps are the
canonical ones. Applying inverse limit we have that the sequence (4.11.1) is
exact. Let us show that it splits. By hypothesis, for all n ∈ N there exists
tn : M⊗AAn →M ′⊗AAn such that vn ◦tn = 1. From {tn}n∈N we are going
to define a family of morphisms {t′n : M ⊗A An →M ′ ⊗A An}n∈N such that

vn ◦ t
′
n = 1 gn ◦ t

′
n+1 = t′n ◦ hn (4.11.2)

for all n ∈ N. For k = 0 put t′0 := t0. Suppose that we have constructed t′k
verifying (4.11.2) for all k ≤ n and let us define t′n+1. If wn := gn ◦ tn+1 −
t′n ◦ hn then vn ◦ wn = 0 and therefore, Imwn ⊂ Ker vn = Imun. Since
M ⊗A An+1 is a projective An+1-module, there exists θn+1 : M ⊗A An+1 →
un+1(M

′′ ⊗A An+1) such that the following diagram is commutative

un+1(M
′′ ⊗A An+1)

M ⊗A An+1
wn
→

θn+1
→

un(M
′′ ⊗A An).

↓↓

If we put t′n+1 := tn+1 − θn+1, it holds that vn+1 ◦ t
′
n+1 = 1 and gn ◦ t

′
n+1 =

t′n ◦ hn. The morphism
t′ := lim

←−
n∈N

t′n

satisfies that v ◦ t′ = 1 and the sequence (4.11.1) splits.

Proposition 4.12. Let f : X→ Y be a pseudo finite type morphism in NFS

and g : Y → S a smooth morphism in NFS. The following conditions are
equivalent:

(1) f is smooth
(2) g ◦ f is smooth and the sequence

0→ f∗Ω̂1
Y/S→ Ω̂1

X/S→ Ω̂1
X/Y→ 0

is exact and locally split.
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Proof. The implication (1) ⇒ (2) is consequence of Proposition 2.9 and of
Proposition 4.9.

As for proving that (2) ⇒ (1) we may suppose that f = Spf(φ) : X =
Spf(A) → Y = Spf(B) and g = Spf(ψ) : Y = Spf(B) → S = Spf(C) are in
NFSaf being B and A formally smooth C-algebras. Let us show that A is a
formally smooth B-algebra. Let E be a discrete ring , I ⊂ E a square zero
ideal and consider the commutative diagram of continuous homomorphisms
of topological rings

C
ψ
→ B

φ
→ A

E

λ
↓

j
� E/I.

u
↓

Since A is a formally smooth C-algebra, there exists a continuous homomor-
phism of topological C-algebras v : A → E such that v ◦ φ ◦ ψ = λ ◦ φ and
j ◦ v = u. Then by [EGA IV1, (0, 20.1.1)]) we have that d := λ − v ◦ φ ∈
DercontC(B,E). From the hypothesis and considering the equivalence of
categories 1.12.3 we have that the sequence of finite type A-modules

0→ Ω̂1
B/C ⊗B A→ Ω̂1

A/C → Ω̂1
A/B → 0

is exact and split. Besides, since the morphism v is continuous and E is
discrete there exists n ∈ N such that E is an A/Jn+1-module. Therefore the

induced map HomA(Ω̂A/C , E)→ HomB(Ω̂B/C , E) is surjective and applying
[EGA IV1, (0, 20.4.8.2)] we have that the map

DerC(A,E)→ DerC(B,E)

is surjective too. It follows that there exists d′ ∈ DerC(A,E) such that
d′ ◦ φ = d. If we put v′ := v + d′, we have that v′ ◦ φ = λ and j ◦ v′ = u.
Therefore, A is a formally smooth B-algebra. �

Corollary 4.13. Let f : X → Y and g : Y → S be two pseudo finite type
morphisms in NFS such that g ◦ f and g are smooth. Then, f is étale if,

and only if, f∗Ω̂1
Y/S
∼= Ω̂1

X/S.

Proof. Follows from the last proposition and Proposition 4.6. �

Proposition 4.14. (Zariski Jacobian criterion for preadic rings) Let B →
A be a continuous morphism of preadic rings and suppose that A is a for-
mally smooth B-algebra. Given an ideal I ⊂ A. Let us consider in A′ := A/I
the topology induced by the topology of A. The following conditions are equiv-
alent:

(1) A′ is a formally smooth B-algebra.
(2) Given J ⊂ A an ideal of definition of A, define A′

n := A/(Jn+1 + I).
The sequence of A′

n-modules

0→
I

I2
⊗A′ A′

n
δn−→ Ω1

A/B ⊗A A
′
n

Φn−−→ Ω1
A′/B ⊗A′ A′

n → 0
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is exact and split, for all n ∈ N.

(3) The sequence of Â′-modules

0→
Î

I2

δ
−→ Ω1

A/B⊗̂AA
′ Φ
−→ Ω̂1

A′/B → 0

is exact and split.

Proof. The fact that (1)⇔ (2) follows from [EGA IV1, (0, 22.6.1), (0, 19.1.5)
and (0, 19.1.7)] and from the Second Fundamental Exact Sequence associ-
ated to the morphisms B → A → A′. Let us show that (2) ⇔ (3). Since
A′ is a formally smooth B-algebra, from [Matsumura 86, Theorem 28.5] we
deduce that Ω1

A′/B ⊗A′ A′
n is a projective A′

n-module, for all n ∈ N and,

therefore, the result follows from 4.11.(2). �

Corollary 4.15. (Zariski Jacobian criterion for formal schemes) Let f :
X = Spf(A)→ Y = Spf(B) be a smooth morphism in NFSaf and X′ ↪→ X a
closed immersion given by an Ideal I = I4 ⊂ OX. The following conditions
are equivalent:

(1) The composed morphism X′ ↪→ X
f
−→ Y is smooth.

(2) Given J ⊂ OX an Ideal of definition, if OX′
n

:= OX/(J
n+1 +I), the

sequence of coherent OX′
n
-Modules

0→
I

I2
⊗OX′ OX′

n

δn−→ Ω̂1
X/Y⊗OX

OX′
n

Φn−−→ Ω̂1
X′/Y⊗OX′ OX′

n
→ 0

is exact and locally split, for all n ∈ N.
(3) The sequence of coherent OX′-Modules

0→
I

I2

δ
−→ Ω̂1

X/Y⊗OX
OX′

Φ
−→ Ω̂1

X′/Y→ 0

is exact and locally split.

Proof. By Proposition 3.3 and the equivalence of categories (1.12.3) it is a
consequence of the last proposition. �

Remark. The implication (1)⇒ (3) is [Lipman, Nayak, Sastry 2005, Propo-
sition 2.6.8], itself a generalization of [EGA IV4, (17.2.5)].
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